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ABSTRACT 

Biodiesel is a fuel consisting of the alkyl monoesters of vegetable oils or animal 

fats. Biodiesel is nontoxic, renewable, and biodegradable. Biodiesel-fueled engines 

produce less carbon monoxide, unbumed hydrocarbon, and particulate emissions than 

diesel fiieled engines. One drawback of biodiesel is that it is susceptible to oxidation 

which can induce poIvTiierization of the esters and can form insoluble gums and 

sediments which are known to cause fuel filter plugging. However, no research has been 

conducted to determine the impact of oxidized biodiesel on engine emissions and fuel 

system performance. 

The objecti\e of this study was to relate the chemical and physical processes 

associated with biodiesel oxidation to the conditions that affect engine pertbrmance and 

emissions. In addition, a relationship was sought between .A.STM D2274. a diesel fuel-

based stability test and AOCS Cd 8-53 and Cd 3a-63 which characterize the chemical 

changes in the fuel. 

It was expected that the fuel filters would plug as the vegetable oil esters oxidized 

but no filter plugging was observed in this study even when the fuel oxidized beyond the 

level that would be encountered in practice. Recent research by others has suggested that 

the filter plugging may be associated with reactions between the diesel fiiel additives and 

biodiesel. 

The engine performance of the oxidized biodiesel was similar to that of No. 2 

diesel fuel with nearly the same thermal efficiency, and slightly higher fuel consumption. 
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Oxidized biodiesels produced between 14% and 16% lower CO and HC emissions and 

smoke number compared to unoxidized biodiesel. No statistically significant difference 

was found between the NO^ emissions from oxidized biodiesel and unoxidized biodiesel. 

Oxidized biodiesel experienced a one degree shorter ignition delay than unoxidized 

biodiesel. The ignition delay was almost linearly correlated to CO and HC emissions. A 

common linear relationship was found between the start of combustion and the NOv 

emissions. When the NOx was plotted against the start of combustion timing, the neat 

biodiesel produced lower NOv emissions than the No. 2 diesel fuel. 
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1. INTRODUCTION 

Historv' records that Rudolph Diesel, a German engineer, introduced the diesel 

engine over a centurv" ago. Since then, a great deal of research and development has taken 

place not only in the design area but also in tlnding an appropriate fuel. Diesel engines 

are wideK" used as power sources for medium and heavy-duty applications because of 

their lower fuel consumption and lower emissions of carbon monoxide (CO) and 

unbumed hydrocarbons (HC) compared with gasoline engines. 

For many years, the ready availability of inexpensive middle-distillate petroleum 

fuels provided little incentive for experimenting with alternative, renewable fuels for 

diesel engines. However, since the oil crisis of the 1970s. research interest has expanded 

in the area of alternative fuels. Since then, many proposals have been made regarding the 

availability' and productivity of an environmentallv sound fuel that could be domestically 

sourced. Many alternative fuels have been suggested including methanol, ethanol. 

compressed natural gas (CNG). liquefied petroleum gas (LPG). liquid natural gas (L.NG). 

\ egetable oils, reformulated gasoline, and reformulated diesel fuel. Of these alternative 

fuels, only ethanol and vegetable oils are non-fossil fuels. 

While alcohol fuels can be burned ver\' cleanly and represent a feasible 

transportation fuel, they have several disadvantages. Although it is possible to bum 

alcohols in conventional engines with efficient combustion and verv low emission levels, 

they are not generally considered to be a good choice because of their low energy content 

compared with petroleum. Ethanol's heating value is only about 65% that of diesel fuel. 
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Ethanol also has a ver\ low cetane number, which renders it unsuitable for use in diesel 

engines. 

In Europe, vegetable oil-based fuels have been widely considered as a potential 

fiiel source. Only recently has the United States considered these types of fuels to be a 

reasonable source of alternative fuel. The properties of vegetable oils render them best 

suited for use in diesel engines [1-3]. 

Many researchers have concluded that vegetable oils hold promise as alternative 

fuels for diesel engines [4-10]. However, using raw vegetable oils for diesel engines can 

cause numerous engine-related problems [11-13 j. The increased viscosity, lov^ volatility, 

and poor cold flow properties of vegetable oils lead to severe engine deposits, injector 

coking, and piston ring sticking [14-17], However, these effects can be reduced or 

eliminated through transesterification of the vegetable oil to form a mono ester [14. 18]. 

The process of transesterification removes glycerol from the triglycerides and replaces it 

with radicals from the alcohol used for the conversion process [IQ]. This process 

decreases the viscosity but maintains the cetane number and the heating value. 

Increasingly strict emissions regulations have forced researchers to look for ways 

to achieve emission reductions through fuel modifications. It has been found that oxygen 

addition to the fuel can reduce exhaust emissions from motor vehicles [20-21 ]. Especially 

for direct injected(DI) engines, there is general agreement that some fraction of vegetable 

oil esters in No. 2 diesel fuel can provide a substantial reduction in HC. CO. and 

paniculate emissions, although at the cost of an increase in NOx emissions [16. 21-23]. 

Biodiesel is a fuel consisting of the alkyl monoesters of vegetable oils or animal 
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fats. The most common form of biodiesel in the United States is made with methanol and 

soybean oil and is known as soy methyl ester, or methyl soyate. One drawback of 

biodiesel is that there is a tradeoff berween biodiesel's tendency to oxidize and its cold 

flow properties. Saturated compounds have higher cetane numbers and are less prone to 

oxidation than unsaturated compounds but they tend to crystallize at unacceptably high 

temperatures. Biodiesel from soybean oil is highly unsaturated so its cold flow properties 

are acceptable, however it is verv- prone to oxidation. The impact of this oxidation on the 

engine's performance and emissions is not currently understood. .A. recent study [24] 

showed that the cetane number of biodiesel increased as the biodiesel oxidized up to a 

peroxide value of 80. Higher cetane number means that the fuel autoignites more easily 

in the engine cylinder. This is an advantage but there are also some disadvantages related 

to oxidation. Hydroperoxides are the initial products of oxidation at ordinar\ 

temperatures. They are very unstable and have a tendency to attack elastomers. In 

addition, the hydroperoxides can induce polvTuerization of the esters and form insoluble 

gums and sediments. Recent research has shown that the oxidation products, sediment 

and gum. caused fuel filter plugging [16]. However, no research has yet been conducted 

to determine the maximum degree of oxidation allowable for the fuel to be used in diesel 

engines. 

A number of diesel emissions studies have been conducted with blends of esters 

of vegetable oils with diesel fuel. Also, a significant number of research projects have 

been conducted with other oxygenated fuels. It has been seen that the oxygenated fuels 

tend to reduce some emissions. However, no research has been conducted to determine 
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the impact of oxidized vegetable oil esters on engine emissions and fuel system 

performance. 

The overall objective of this study was to relate the chemical and physical 

processes associated with biodiesel oxidation to the conditions that affect engine 

performance and emissions. 

The specific objectives of this study were to; 

1. understand the changes that occur in the fuel when it oxidizes. 

2. establish a connection between .\STM fliel stability tests and .AOCS tests. ASTM 

D2274 is a diesel fuel-based test which measures sediment and gum formation and 

.\OCS Cd 8-53 and Cd 3a-63 are tests which measure the chemical changes the fuel 

undergoes during oxidation. 

3. evaluate the impact of oxidized fiiel on engine performance and exhaust emissions. 

4. compare ±e calculated fiiel burning rate for oxidized biodiesel with the burning rate 

for unoxidized fiiel and a baseline diesel fuel. 

This dissertation contains six chapters. The first chapter has provided a general 

introduction and statement of objectives. The second chapter provides a literature review . 

The third chapter discusses the experimental apparatus and procedures to be used for the 

tests. The fourth chapter discusses the data collection and analysis including the burning 

rate (heat release) model. The fifth chapter discusses the exhaust emissions for oxidized 

biodiesel and the results of the heat release analysis. The final chapter summarizes the 

conclusions related to this study. 
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2. REVIEW OF LITERATURE 

In this chapter, background information on biodiesei and the processes related to 

its oxidation and stability' are discussed. This is followed by a discussion of the emissions 

of vegetable oil esters. 

2.1 Vegetable Oils 

Since the invention of the compression ignition engine, researchers have been 

investigating alternative fuels. Rudolph Diesel used vegetable oils as diesel fiiel [35]. 

However, the limitations of his engine design and the high cost of vegetable oils caused 

him to favor petroleum-based fuels. Before the OPEC oil embargo of the 1970s, there 

was little incentive for experimenting with vegetable oil-based fuels. Since then, a 

number of researchers have investigated vegetable oil based fuels [25-32]. Man\ of them 

have concluded that vegetable oils can be safely burned for shon periods of time in a 

diesel engine. However, as noted earlier, using raw vegetable oil in a diesel engine for 

extended periods of time may result in severe engine deposits, piston ring sticking, 

injector coking, and thickening of the lubricating oil [25. 27. 33-37] 

Most of the properties of vegetable oil are similar to diesel fiiel. but the viscosity 

of vegetable oil is 11 to 17 times higher than diesel fuel. The high viscosity is due 

primarily to the high molecular weight of the triglyceride molecules which typically 

consist of three 18-carbon chains attached to a single glycerin backbone. Higher viscosity 

reduces fuel atomization and increases the fuel injection spray penetration. Higher spray 

penetration is thought to be at least in part responsible for the difficulties experienced 
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with engine deposits and thickening of the lubrication oil [25. 29. 381. 

Hemmerlein et al. [33] used six modem D1 diesel engines to evaluate the effects 

of rapeseed oil on engine pertbrmance and emissions. Their results showed that there 

were no significant effects of rapeseed oil on engine performance compared with diesel 

fliel. Carbon monoxide (CO) emissions were up to 100% higher over the whole engine 

operating range with rapeseed oil compared to diesel fuel. .\n increase in HC emissions 

was measured for most of the engines. The increase depended on the operating range of 

the engines and could amount to an increase of 290% compared to diesel fuel. Emissions 

of nitrogen oxides were up to 25% lower with rapeseed oil. Also, soot emissions were 

lower over the whole operating range with rapeseed oil. The particulate emissions were 

reduced around 30 to 50% with rapeseed oil in divided combustion chamber engines. 

Direct injection engines showed 90 to 140% higher particulate emissions with rapeseed 

oil compared to diesel fiiel. 

•A. significant factor in reducing carbon buildup in the engine is the level of 

saturation of the vegetable oil. Oils with higher levels of saturation are more desirable for 

fuels. Petroleum-based diesel fuels have higher Ie\ els of saturation than vegetable oils. 

The double bonds that are tvpical of unsaturated molecules are ver\' susceptible to 

oxidation. 

Petrolemn-based diesel fiiel contain carbon and hydrogen atoms, arranged in 

straight-chain and branched-chain structures as well as aromatic configurations. The 

straight-chain structure is preferred for better diesel ignition quality. Diesel fuel can 

contain both saturated (having no C-C double bonds) and unsaturated (having one or 
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more C-C double bonds) hydrocarbons, but the unsaturated hydrocarbons are not present 

in large enough amounts to make fiiel oxidation a problem. The aromatics. although 

unsaturated, are oxidation-resistant and their presence does not cause a fuel oxidation 

problem. 

Vegetable oils are fatty esters of glycerol (triglycerides) and have the chemical 

structure as shov\Ti in Figure 2.1 [25]. 

O 

II 
CH:—O —C —R, 

i O 

I II 
CH —O —C —R: 

I O 

1 li 
CH; —O —C —R:, 

Figure 2.1 Vegetable oirs structural notation 

where R|. R:, and R? represent the hydrocarbon chain of the fatt\' acids. Ri. R;. and R3 

may be the same, depending upon the particular oil. but generally are different in chain 

length and in the number of double bonds present. 

2.2 Transesterification 

The \ iscosit>- of the fiiel is a prime concern because of its effects on the injected 

fuel spray panem. Diesel fuel injectors are designed for fuels with viscosity similar to 

No. 2 diesel fuel. If the viscosity of vegetable oil could be reduced, it would reduce 
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engine operation problems. 

Transesterification is the process of reacting a triglyceride, such as one of the 

vegetable oils, with an alcohol in the presence of a catalyst to produce free glycerol and 

fart\" acid esters. Transesterification reduces the viscosity of vegetable oils without 

significantly affecting the heating value of the fiael and has been found to overcome some 

of the drawbacks of 100°'o vegetable oils. TTie molecular weight of a typical ester 

molecule is roughly one third that of a straight vegetable oil molecule and has a viscosity 

only 50°'o higher than that of diesel fuel. Figure 2.2 illustrates the reaction using methanol 

and potassium hydroxide. Other alcohols such as ethyl, isopropyl. and butyl alcohol 

could also be used. Similarly, otlier alkaline catalysts besides potassium hydroxide can be 

used such as sodium hydroxide and sodium methoxide. Acid catalyzed transesterification 

is also possible. 

O O 
ii i: 

C H :  — O  — C  — R i  C H r - 0  — C  — R ,  C H r - O H  
; O O I 
i KOH 1| i 

C H  — O  — C  — R -  -  C H 3 O H  >  C H , —  O  — C  — R :  -  C H  — O H  
I 
I ' o o 

; i  i i  

C H :  — O  — C  — R 3  C H 3 — O  — C  — R 3  C H r — O H  

Vegetable Oil Methyl .•\lcohol Methyl Esters Glycerin 

Figure 2.2. Transesterfication of vegetable oil using methanol and potassium 

hvdroxide catalyst. 
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23 Oxidation 

Because of their unsaturated nature, vegetable oils are very prone to oxidation. 

Vegetable oils are oxidized through contact with molecular oxygen in the air. Oxidation 

reactions that occur without any outside influence are called autuxidation. As defined in 

StautTer's Fats and Oils Handbook [39], autoxidation is a series of free radical reactions, 

initiated and propagated by free radicals reacting with methylene -CH2- groups that are 

adjacent to double bonds. This is why the rate of oxidation is so strongly affected by the 

degree of saturation of the oil. .A. free radical having an unpaired electron is a vers' 

reactive species. A typical autoxidation reaction mechanism is showTi in Figure 2.3. At 

the beginning of the autoxidation process, a hydrogen radical is extracted, and one of the 

double bonds shifts, moving the radical site to the outer carbon (reaction 1). Dissolved 

oxygen adds to this site, generating a peroxyl radical (reaction 2); this abstracts a 

• 

( 1 )  — C H  =  C H — C H : C H  = C H —  -  R *  > •  R H  -  —  C H  =  C H  — C H  =  C H  —  C H —  

OO* 

( 2 )  — C H  =  C H — C H  =  C H  — C H —  -  O ;  —  C H  = C H  — C H  = C H — C H  —  

oo« OOH 

( 3 )  — C H  = C H  — C H  = C H  — C H —  -  R H  —  C H  = C H  — C H  =  C H — C H —  -  R *  

OOH 

( 4 )  — C H  =  C H  — C H  =  C H —  C H  —  —  C H = C H — C H  =  C H — C H —  -  " O H  

Figure 23 Reactions occurring during autoxidation of fat (391 
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hydrogen from a donor-perhaps another methylene group making a hydroperoxide 

(reaction 3). The hydroperoxide splits to generate two free radicals, a hydroxyl and an 

alkoxyl radical (reaction 4). This reaction is catalyzed by traces of metal ions such as iron 

and copper. Each free radical in this reaction can initiate another chain of reactions. The 

radicals involved in autoxidation can also participate in polymerization reactions such as: 

R* - R* R— R 

or 

R* - ROO* ROOR 

These reactions produce high molecular weight insoluble sediments and gums. 

Most \egetable oils contain natural antioxidants, such as vitamin E (tocopherol). 

These antioxidants react with the active free radicals and transfer them to the antioxidant. 

The radical of the antioxidant has a low reactivity and does not initiate new reaction 

chains. However, as free radicals continue to form, eventually all the antioxidant will be 

consumed, and the oxidation will then proceed rapidly. 

2.4 Fuel Stability 

With or without any external initiation biodiesel fuel will oxidize when it is in 

contact with oxygen. Extemal initiation may be heat, light, metals, and chemicals. When 

oxygen comes in contact with biodiesel. the double bond reacts with oxygen to produce a 

variety of chemical products, and this can alter the properties of biodiesel. When this 

process occurs at ordinarv" temperatures, the initial products are hydroperoxides. The 

extent of this level of oxidation can be characterized by the peroxide value as measured 
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with the American Oil Chemists" Society (AOCS) official method Cd 8-53. As the 

oxidation continues, the peroxides may split and form aldehydes, ketones, and short chain 

acids that cause an unpleasant odor. Also, sediment and gum formations are the products 

of oxidation through polymerization of the peroxides. These changes in the fuel's 

chemical properties are identified as a fuel stability problem. 

Fuel stability can be classified as storage stability, thermal stability, and oxidative 

stabilit\'. Storage stability is associated with any fiiel changes while the fuel is in storage 

for a long time. The fuel may be exposed to the air. Thermal stability is associated with 

any fuel changes as the fuel is heated. Again, the fuel may be in contact with air. 

Oxidative stabilit> is associated with fuel changes through the oxidation process when the 

fuel is in contact with oxygen from air. 

There are two categories of test methods for fuel stability. One categor> consists 

of standard tests specified by the American Societ>' for Testing and Materials (.ASTM). 

and the other category is the AOCS tests. The .ASTM thermal stability test for diesel fiiel 

(D2274) consists of heating the fuel to 95 °C while bubbling oxygen through it for 16 

hours, and then measuring the amount of gum and sediment produced in the process [40 ]. 

The AOCS tests quantify the level of peroxides in the fiiel that have developed as 

a result of oxidation [41. 42]. Peroxides are considered intermediates in the lipid 

oxidation reaction scheme. The peroxide value is expressed as milliequivalents of 

peroxide per 1000 grams of sample. The Oil Stability Index (OSI) method, .^OCS 

Official Method Cd 12b-92 [43]. may be used as an alternate method for characterizing 

oxidation. This method measures the time required for the sample to pass through its 
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induction period. This is the point when the antioxidants have been exhausted and 

oxidation begins rapidly. In this method a stream of purified air is passed through a 

sample of oil or fat which is held in a temperature controlled bath. The effluent air from 

the sample is bubbled through deionized water. The conductivity of the water is then 

monitored continually. The effluent air contains volatile organic acids, swept from the 

oxidized sample, that increase the conductivity of water as oxidation proceeds. The Oil 

Stability Index (OSI) is defined as the point where the rate of change of oxidation is a 

maximum. The acid and peroxide value tests are explained in Appendices A and B. 

Duplessis et al. [44] conducted stability studies on methyl and ethyl fatty acid 

esters of sunflower seed oil. Storage tests on the methyl and ethyl fatty acid esters were 

conducted for 90 days with six different experimental treatments at three different 

temperature levels (20 °C. 30 ''C. and fluctuating around 50 "C). Storage of esters in 

contact with air. especially at temperatures above 30 ''C. resulted in significant increases 

in peroxide value, ultrav iolet absorption, free fatty acids, viscosity, and anisidine values. 

The anisidine value is a measure of the aldehyde and ketone content of the ester. 

Retarded oxidation for all temperature levels was found when contact with oxygen was 

limited. Viscosity increased at all three temperature levels, but the rate of viscosity 

change at higher temperature was higher than at the lower temperature. .A direct 

relationship was found between the viscosity increase and the oxidation parameters (acid, 

peroxide, and anisidine value). Exposure to light resulted in a small increase in the 

oxidation parameters of esters stored at the highest temperature level. An antioxidant, 

tertiarv' butylhydroquinone (TBHQ). prevented oxidation of samples stored under 
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moderate conditions, but they found it was not effective if the samples were stored under 

high temperature (50 C). Mild steel had little catalytic efTect on the oxidation parameters. 

Methyl esters oxidized slightly slower than ethyl esters during the storage test. 

Van Gerpen et al. [24] oxidized two fuels, freshly prepared methyl esters and 

distilled methyl esters, under fluorescent light with continuous stirring at room 

temperature. AOCS official method Cd 8-53 was used to measure the peroxide value. 

The peroxide value of the freshly prepared, undistilled esters increased almost linearly 

v\ith increasing time. For these esters, it took 24 days to reach a peroxide value of 80. 

Howe\er. the distilled methyl esters, which had their natural antioxidant Vitamin E 

removed, oxidized much faster. It took only 6 days to reach a peroxide value of 96. Later 

measurements of the cetane number showed that it increased as the oxidation continued 

to increase until a peroxide value of 80 was reached. The cetane number for both 

undistilled and distilled esters were the same when they had the same peroxide value. 

2.5 Diesel Engine Emissions Fueled with Vegetable Oil Esters 

.A.lthough vegetable oils have been used in a limited way in the past, most current 

attention has focused on transesterified vegetable oils that have proven successful in 

many ways. Several researchers have observed that the exhaust emissions are affected by 

the use of vegetable oil esters. Chang et al. [21] used a four-cylinder turbocharged DI 

diesel engine fueled with blends of methyl and isopropyl esters of soybean oil in No. 2 

diesel fuel to test the engine's performance and emissions. The results indicated that 

engine performance for all the fuel blends was similar to No. 2 diesel fuel. The CO 
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emissions of all fiiel blends were significantly lower than for No. 2 diesel fuel and the 

greatest CO emissions reduction (ZSJ^/b) was found with 50% blends with methyl esters. 

All ester blends lowered HC emissions except for the 20% methyl ester blends with low-

sulfur diesel. Howe\ er. a slight increase of HC emissions compared to No. 2 diesel fuel 

was not statistically significant. The NOx emissions for ail fiiel blends were higher them 

for No. 2 diesel fuel. A significant NO^ emissions increase was found for 20% and 50 % 

isopropyl and winterized methyl esters blends with No. 2 diesel fuel. The winterized 

blend was produced by cooling ordinarv' methyl esters of soybean oil until some of the 

saturated components started to crystallize. These were removed to produce a product 

with improved cold flow characteristics. The 50% isopropyl ester blend had 12.1% higher 

NOx emissions. The blends with methyl esters had the lowest increase in NOx emissions, 

which was below 4%. All fuel blends had significantly improved particulate emissions. 

The 50% ester blends decreased particulate emissions by at least 17.4°/o. and the largest 

reduction in particulate emissions was found for the 50% isopropyl esters with low-sulfur 

No. 2 diesel fuel, which gave a 28% reduction. 

Schmidt [45] saidied the emission and performance characteristics of the 

individual fatty esters found in soybean-based biodiesel. A John Deere 4276T four 

cylinder, turbocharged direct injection diesel engine was fueled vvith pure methyl esters 

of all of the fatt\ acids found in soybean oil (methyl soyate. metliyl paJmitate. methyl 

stearate. methyl oleate. methyl ester of safflower oil. and methyl ester of linseed oil) and 

isopropyl esters of two fatty acids at 20% and 50% blends in No. 2 diesel ftiel. The 

safflower and linseed oils were chosen because they are high in linoleic and linolenic 
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acids, respectively. Particulate emissions reduction was found for some of the esters. 

Methyl palmitate reduced the particulate emissions more than all of the other fatty esters. 

The largest particulate reduction of 30% was found for the 50% blend of methyl 

palmitate. The CO emissions reduction was not significant. However, methyl stearate and 

methyl palmitate appeared to reduce CO the most when blended with diesel fuel. The HC 

emissions decreased as the percent ester increased for all of the esters. The most 

significant reduction in HC emissions was found for methyl stearate and methyl palmitate 

esters, which gave reductions of about 30%. The NO^ emissions did not change 

significantly for any of the esters. The BSFC increased as the amount of ester in the fuel 

increased, due to the lower energy content of the ester fuels. 

Geyer et al. [46] used a single cylinder 0.36 L direct injection diesel engine to 

provide a comparison of performance and emissions data when operating on neat 

vegetable oils, transesterified vegetable oils, and diesel fuel. The results indicated that the 

thermal efficiencies of the vegetable oils were slightly better than No. 2 diesel fuel and 

higher exhaust gas temperatures were found. The unbumed hydrocarbons and carbon 

mono.xide emissions generally decreased with increased load. However, the methyl esters 

of sunflowerseed oil had higher carbon monoxide (CO) emissions at the full load setting. 

The NO^ emission was significantly higher for the methyl esters at all rack senings. 

Scholl and Sorenson [1] fueled a direct injection diesel engine with soybean oil 

methyl ester and diesel fuel to investigate the combustion of the methyl ester. The results 

indicated that the soybean oil methyl ester behaved comparably to diesel fuel in terms of 

performance and rate of heat release. Lower HC emissions and smoke number were 
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found for the methyl ester. The CO emissions results were mixed. The NO^, emissions 

were strongly related to the cv linder pressure. The variation of injection timing had a 

pronounced effect on performance and emissions for both fuels. The test also included 

two injection nozzle diameters. For a small nozzle diameter at the two timings 

investigated, standard and 5*^ retarded, the CO emissions were slightly lower for the 

methyl ester. For a large nozzle diameter, the CO emissions were the same for diesei fuel 

and the methyl soyate at the standard timing. The CO emissions for the methyl soyate 

were higher at all but the highest load for the retarded timing. The HC emissions from the 

methyl ester were about one half of those from the diesei fuel. 

Graboski et al. [47] used a 1991 DDC Series 60 engine to study the effect of 

blending biodiesel (methyl soyester) with diesei on the engine's exhaust emissions. The 

study showed that as the percent biodiesel increased, the NOx emission increased, while 

the HC. CO. and particulate matter decreased. For a 35% biodiesel blend with diesei ftiel. 

the NOv emission increased by only 1 % while the particulate emission decreased by 26%. 

For 100% biodiesel. the NOx emission increased by 11% while the particulate matter 

(PM) decreased by 66%. The carbon monoxide (CO) was reduced b\ 47% and the total 

HC by 44%. 

.A.lfliso et al. [48] reported on a lest that had been carried out on a Dl. 

turbocharged diesei engine. The study found that the methyl ester of rapeseed oil caused 

an increase in NOx emissions, a decrease in HC and CO emissions, as well as a strong 

reduction of smoke. However, the particulate matter produced by the methyl ester in 

transient cycles was higher than that of diesei fuel. The discrepanc\ between smoke level 
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and particulate matter was indicative of high soluble organic fraction in the particulate 

when fueling with biodiesel. 

Last et al. [22] investigated the potential for improving emissions from a DI diesel 

engine using different blends of methyl soyate. Substantial emissions improvements were 

found with a relatively small methyl ester fraction. .A.t the standard injection timing 

calibration, reductions in HC. CO. and particulate emissions at 10. 20. 30. 50. and 100% 

blends were found compared to 100% diesel fuel. The NO^ emission increased linearly 

with the methyl ester fraction. Fuel consumption increased over the full load range as the 

fraction of soybean methyl ester became larger. 

Clark et al. [16] experienced fuel filter plugging with both methyl and ethyl 

esters, while the>' were using a John Deere 4239 TF direct-injection. 4-cylinder. 

turbocharged diesel engine. Inspection of the filter revealed a gummy substance on the 

"dirty" side of the filter. They suspected the gum formation took place after the fuel drum 

was opened to be used. During subsequent tests, the fuel was filtered as it was removed 

from the barrel using a cannister filter. This procedure eliminated the plugging problem 

in the engine filter. They found that engine performance was not the same for soybean 

ester fuels and diesel fuel. A slight power loss combined with an increase in fuel 

consumption were experienced with the soybean esters, because the lower heating value 

of the esters is less than for diesel fuel. It was also found that no notable difference in 

emissions occurred among the esters and the No. 2 diesel fuel except for an increase in 

NOx emissions for the esters. No wear was found on the cylinder walls (liners) and 

piston, and no piston rings were foimd to be stuck. However, piston deposits were 



www.manaraa.com

18 

significantly greater for the methyl ester. 

Generally, transesterified vegetable oil and its blends with diesel fuel reduce CO. 

HC. smoke, and particulate emissions, but usually increase NOx emissions slightly 

relative to No. 2 diesel fiiel. The magnitudes of the emission changes appear to be engine 

dependent. The engine performance and durability of these fuels is also comparable to 

diesel fuel. 

2.6 Diesel Engine Emissions for Other Oxygenated Diesel Fuels 

Fatty acid esters contain oxygen atoms in their molecules while a hydrocarbon 

lliel like diesel fuel does not. The addition of oxygen atoms in the fuel means that the fuel 

will bum leaner in the central core of the fuel spray which reduces the formation of solid 

carbon and allows the unbumed hydrocarbon and particulate to bum more completely 

before the combustion products leave the combustion chamber. 

The success of oxygenated gasoline has sparked interest in the use of oxygenated 

compounds in diesel fuel. Oxygenates were first used over fifty years ago to produce 

clean burning diesel fuels. Since that time many research projects have been conducted to 

determine the effect that oxygenated fuels will have on diesel engine performance and 

emissions. Liona et al. [49. 50] investigated the effect of several different oxygenated 

fuel additives on emissions. Two reference diesel fuels were also used tor their 

investigation. One was a low sulfiir fuel with about 31% aromatics and the other was a 

low sulfur and low aromatic fuel. The oxygenated compounds were selected on the basis 

of toxicity, economic viability as fuel additives, and fuel blending properties. The fuel 
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blending properties included; additive solubilit\\ flash point, viscosity, solubility of 

water, and the water partitioning of the additive. Three glycol ethers, an aromatic alcohol, 

an aliphatic alcohol, and a polyether polyol were selected for evaluation. Diglyme and 

methyl soyate were also included to allow comparisons to previous results. Most of the 

oxygenated additives used in the study did not affect the cetane number in the base fuel. 

Based on the EP.A. hea\y-duty transient emissions test cycle. CO was generally reduced, a 

var>'ing effect was found on the total hydrocarbon emissions, and NO^ emission showed a 

small increase for all oxygenated additives. The particulate matter emissions were 

reduced with the oxygenated fuels and this reduction appeared to be related to the amount 

of oxygen in the ftiel. The oxygenated tiiels also reduced the total aldehyde and ketone 

emissions. 

McCormick et al. [20] also investigated the effect of several oxygenates on 

emissions. The transient emissions testing was performed on two heavy-duty DI diesel 

engines: a Detroit Diesel 6V92 and a Detroit Diesel Series 60. Ethanol. 1-octanol. 

decanoic acid, and soybean oil methyl ester were selected for evaluation and blended at 

the I and 2 wt % oxygen levels. Octanol. decanoic acid, and methyl soyate were tested in 

the 6V92 engine at the 1 wi % level. The 1 \vi % level corresponded to blends of 8.5 vol 

% octanol . 5.2 vol % decanoic acid, and 8.9 vol % methyl soyate in No. 2 diesel fuel, 

respectively. Ethanol. octanol. and methyl soyate were tested in the Series 60 engine at 

the 2 wt % level. Two wt % oxygen corresponded to blends of 6.5 vol % ethanol. 16.6 

vol % octanol and 17.7 vol % methyl soyate in No. 2 diesel fiiel. All of the oxygenates 

tested in the 6V92. 2-stroke engine produced a significant reduction in particulate matter 
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(PM) emissions in the range of 12-17%. For octanol at the I wi % level of oxygen, 

hydrocarbon (HC) emissions were increased 4%. carbon monoxide (CO) emissions were 

decreased 2.8%. NOy emissions were decreased 1.1%. and the PM emissions were 

decreased 17.2%. For octanol at the 2 wt ° o level of oxygen, hydrocarbon (HC) emissions 

were increased 24.9%. carbon monoxide (CO) emissions were decreased 2.1%. N'O^ 

emissions were decreased 3°/o. and PM emissions were decreased 37.6%. For methyl 

soyate at the 1 v\i % le\el of oxygen, hydrocarbon (HC) emissions were increased 0.8%. 

carbon monoxide (CO) emissions were decreased 7%, NOx emissions were increased 

2.3%. and PM emissions were decreased 15.4%. For methyl soyate at the 2 wt % level of 

oxygen, hydrocarbon (HC) emissions were decreased 10.2%. carbon monoxide (CO) 

emissions were decreased 13.9%. NO^ emissions were increased 2.5%. and PM 

emissions were decreased 19.5%. Methyl soyate produced significantly less CO 

emissions at the 2 wt % level of oxygen than at the I wt % level of oxygen. Octanol also 

produced less CO emissions for both oxygen levels. In the Series 60 engine, ethanoi 

generally produced very poor engine operation. 

Schmidt [45] compared the emissions from biodiesel with emissions when the air 

oxygen content was increased, and when long chain hydrocarbons and cetane improver 

were added. The oxygen content of the intake air was controlled by adding oxygen and 

nitrogen, respectively, to the intake air system. The solid portion of the particulate 

emissions decreased by 33% as the intake oxygen content increased from 20.5% to 22%. 

However, the soluble portion of the particulate emissions remained relatively constant. 

The NOx emissions increased as the oxygen content in the intake system increeised. The 
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CO emissions decreased slightly and the HC emissions remained fairly constant as the 

oxygen content of the intake air was increased. The ethylhexyl nitrate cetane improver 

increased the cetane number by 10.3 points. This cetane improver reduced the particulate 

emissions by 6% but no effect was found on the oxides of nitrogen (NO^) emissions. 

Normal-octadecane. a long chain hydrocarbon, decreased the particulate and unbumed 

hydrocarbon emissions but did not change the oxides of nitrogen (NO>.) emissions. 

Particulate and hydrocarbon emissions decreased by 21% and 22% respectively, for a 

50/50 blend of n-octadecane and diesel fuel. 

In general, oxygenated fuels produce a significant reduction in particulate 

emissions from diesel engines but in most cases also cause the nitrogen oxide emissions 

to increase. 
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3. EQUIPMENT AND PROCEDURE 

A priman objective of this study was to relate the chemical and physical 

processes associated with biodiesel oxidation to the conditions that alTect engine 

performance and emissions. In this chapter, the equipment that was used to accomplish 

the objectives will be discussed. To establish the connection between the chemical and 

physical processes associated with biodiesel. a fuel filter test setup was constructed. The 

first section discusses this biodiesel fuel filter test setup. The second section describes the 

engine test setup. The third section describes the emissions equipment and the data 

acquisition system is presented in the last section. These last three sections are to evaluate 

the impact of oxidized ftiel on engine performance and exhaust emissions. 

3.1 Biodiesel Fuel Filter Test Apparatus 

3.1.1 Fuel filter test apparatus setup 

Recent research has indicated that biodiesel may be subject to fuel filter plugging 

problems caused by sediment and gum formation [16]. Due to the unsaturated nature of 

biodiesel. the fiiel changes chemically to form these compounds. Gum and sediment are 

the end products of polymerization reactions that can occur during oxidation. The ASTM 

D2274 test measures sediment and gum formation and the .AOCS tests Cd 8-53 and Cd 

3a-63 measure fiiel oxidation. To establish the relation between these two tests, a fuel 

filter test stand was built. 

The SAE J905 standard for fuel filter testing was followed to construct the test 
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stand. A schematic of the test stand is shown in Figure 3.1. Three eighths of an inch 

stainless steel tubing was used for the entire test rig. .A Holley model 12-802 electric fuel 

pump followed by a Fleetguard model PS 1001 fuel filter in a horizontal line was firmly 

attached with a strut to the top of a 55-gallon barrel. The biodiesel fuel was pumped from 

the 55-gallon barrel and pushed through the fiael filter before returning to the 55-gallon 

barrel. .A Validyne model P305D differential pressure transducer was used to take the 

differential pressure across the fiiel filter. A foiu--way valve was used to take fiael samples 

at a point down stream of the filter. A four-way fitting at the beginning of the fiow was 

used to install two K-ty pe thermocouples. One of the thermocouples was connected to an 

Omega Model CN9000.A. temperature controller to control the temperature of the fuel in 

the barrel and the other was connected to the data acquisition system to record the 

temperature. .A. flexible electric heating tape was wrapped around the barrel to heat the 

t\iel. 

In this part of the experiment, a total of four test rigs using 55 gallon barrels and a 

test rig with a 5-gallon stainless steel container were used. Two of the barrels were 

maintained at a controlled temperature at 60 "C and the other two were at room 

temperature. The 5-galIon test rig was maintained at 60 "C. The temperature of 60"C was 

chosen because this is a reasonable value for fuel circulating through a diesel engine fuel 

system. The flow rate was kept constant for all the tests. 
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1. 55-gaIlon barrel 2. K-type thermocouples 3. Holley model 12-802 electric fuel pump 4. 12 Volt DC 
supply 5. Pressure gauge 6. Fleetguard model PS 1001 fuel filter 7. Differential pressure transducer 8. 
Three-way valve 9. Sample container 10. Scanner II. Ice point 12. Volt meter 13. Computer 14. Omega 
Model CN9000A temperature controller 15. 110 Volt AC supply 16. Relay 17. Flexible electric heating 
tape 

Figure 3.1 Schematic diagram of the fuel filter rig 



www.manaraa.com

3.1.2 Data acquisition system for Alter rig 

A Quick Basic program was used to collect data from all five test rigs. A 

computer was used to measure the time, temperature, and differential pressure across the 

filter, for each test rig. Eleven channels were needed for all five test rigs. A scan of the 

eleven data channels was taken ever>' tlve minutes and was stored in the computer. 

The electronic data acquisition system was only used for the initial portion of the 

testing. WTien it was found that the filters were not plugging, most of the test data were 

logged manually. 

3.1.3 Pressure drop and chemical properties of biodiesel data collection procedure 

The main variables in this test were time, initial oxidation level (peroxide value) 

of the biodiesel. percent of biodiesel blended with No. 2 diesel fuel, viscosity, acid value, 

and temperature. The blends of 20% and 50% biodiesel with No. 2 diesel ftiel were 

tested at 60 and at room temperature. These four tests were conducted in the 55-gallon 

barrels. In each test, 33 gallons of fuel were used. Only a single 100 % biodiesel test at 

60 •'C was conducted in the stainless steel container. This test was conducted with 5000 

grams of pure biodiesel. 

The fuel blend was circulated through the filter during the test and as the test 

proceeded, the fiiel blend oxidized. Initially, the oxidation rate was slow because of its 

antioxidant content. This slow oxidation period is called the induction period. After the 

induction period, the fuel oxidized rapidly. One product of the liuel oxidation was the 

production of sediment and giun. This sediment and gum were collected by the filter and 



www.manaraa.com

the pressure drop across the filter began to rise. Although it vvas never reached during the 

test, eight inches of mercur\ pressure drop across the filter was considered to be a 

plugged fuel filter. 

The pressure drop across the filter was initially taken ever\ five minutes and fuel 

samples for the properties were taken ever\' day. However, after a few days, the samples 

were taken every other day and the fuel filter pressure drop was monitored at this 

frequency as well. The fuel flow rale was kept constant by adjusting the voltage across 

the pump. A graduation cylinder was used to measure the flow rate. 

3.1.4 .\STM D2274-94, standard test method for oxidation stabilit> of distillate fuel 

oil 

.A.STM test method D2274 is the most commonly used method for characterizing 

the thermal and oxidative stability of diesel fuel. It was found during the course of this 

project that D2274 has significant problems when used to measure the stability of 

biodiesel. Since the procedures used to perform D2274 must be understood to explain its 

shoncomings. it will be described in detail below. Similar descriptions of the procedures 

used to measure the acid value and peroxide value are provided in Appendices A and B. 

respectively. 

Oxidation is a chemical process that can cause insoluble material to form in the 

fuel. Any substance that catalyzes oxidation reactions will cause greater quantities of 

insolubles to form. For example, copper and chromium catalyze the oxidation reaction. It 

is important that any residues that could contain these metals be eliminated from the 
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apparatus. 

It is necessary- to define a few terms used in the .A-STM method such as adherent 

insolubles. filterable insolubles. total insolubles. and trisolvent. Material which is 

produced in the course of stressing distillate fuel under the conditions of this test and 

which adheres to the glassv\are after rinsing the fuel from the s\stem can be defined as 

adherent insolubles. Filterable insolubles is the material which is produced in the course 

of stressing distillate fuel under the conditions of this test that can be removed from the 

fijel by filtration. Total insolubles is the sum of the adherent and filterable insolubles. 

Trisolvent is a solution of equal volumes of toluene, acetone, and methanol. 

The test method used for ASTM D2274 is described below: 

.A. 300 ml sample of middle distillate fuel is aged at 95 ''C for 16 hr while pure 

oxygen is bubbled through the sample at a rate of 3 L/h. .A.fter aging, the sample is cooled 

to appro.ximately room temperature before filtering to get the filterable insoluble quantity. 

Adherent insolubles are then removed from the oxidation cell and associated glassware 

with trisolvent. The trisolvent is then evaporated to obtain the quantity of adherent 

insolubles. The sum of the filterable and adherent insolubles is the total insolubles. The 

result is expressed as milligrams per 100 ml of fuel. 

.\n oxidation cell of borosilicate glass as shown in Figure 3.2. a temperature 

controlled heating bath, a flowmeter, a filter drying oven, a filter media of 47 mm 

diameter cellulose ester membrane with pore size of 0.8 micrometer, a borosilicate glass 

beaker, and a hot plate are needed for these tests. .Also, isooctane of 99.75% purity, 

oxygen of 99.5% purity, and trisolvent are needed for this test. 
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Figure 3.2 Oxidation cell of borosilicate glass [40] 
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Procedure; 

1. Preparing the sample: Before using the sample in the oxidation cell, the sample must 

be filtered. About 400 ml of sample is poured through the filter while applying 80 kPa 

(12 psi) of suction. The same filter can never be used twice. 

2. -A-ssembling the oxidation apparatus: place an oxygen deliver\ tube into a clean 

oxidation cell and pour 300 ^'-5 ml of filtered sample into the cell. Immerse the test 

cell into the controlled temperature of a 95 ''C heating bath. Place the cell in a dark 

place. Maintain the oxygen flow into the sample at 3 LTi for 16 hours. 

3. Cooling the sample: Remove the sample from the heating bath and place in a dark 

place at room temperature until the room temperature is attained or no longer than 4 

hours. 

4. Determining filterable insolubles: Use one pair of matched filters with one filter on 

top of the other. Place these filters on top of a membrane filter support. A clamp holds 

firmly the filter support and the filter funnel. Pour the cooled sample through the 

filters while applying suction of about 80 kPa (12 psi). On completion of filtration, 

completely rinse the oxidation cell and oxygen delivery tube by pouring 50 ml of 

isooctane through the filter assembly three times. After filtration is complete, 

disconnect the top part of the filter assembly, and wash down the rim of the filter 

media and the adjacent part of the filter media with an additional 50 ml of isooctane. 

Dr>- the two filter media at 80 T for 30 min. Then, cool them for 30 min. and weigh 

the upper and lower filter separately to the nearest 0.1 mg. 

5. Determining the adherent insoluble: After final rinsing of the oxidation cell and the 
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OX} gen deliver} tube with isooclane. remove the adherent insolubles from the surface 

of the oxidation cell and the oxygen delivery- tube with three equal volumes of 25 ml 

of trisolvent. Collect the rinsings and evaporate the trisolvent at 135 ''C under a hood. 

To measure the impurities in the irisoK ent. an equal volume of trisolvent is used to 

get the adherent insoluble blank. Weigh the cooled and dr>' sample to the nearest 0.1 

mg. 

Calculation: 

Calculate the filterable insolubles weight (A) in mg per 100 ml of sample. 

Subtract the weight of the blank (bottom) filter (Wi) from the sample (top) filter (W:) and 

divide by 3.0 to express the result as mg per 100 ml. 

."X — (\\ 1 )/3 

Calculate the adherent insolubles weight (B) in mg per 100 ml. 

B -((We,-W4HW5-W3))/3 

Where; 

W6= final weight of the sample beaker, mg 

W4 = tare weight of the sample beaker, mg 

W5 = final weight of the blank beaker, mg 

W;, = tare weight of the blank beaker, mg 

The sum of .A.^B is the total insolubles. 

The use of this test method in an attempt to measure the gum and sediment 

formation with biodiesel is described in the Results and Discussion chapter. 
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3.2 Engine Test Setup 

The main purpose of this part of the experiment was to determine the performance 

and oxides of nitrogen (NO^) emissions of oxidized biodiesel compared with non-

oxidized biodiesel and No. 2 diesel fuel. To accomplish this purpose, a John Deere 4276T 

four-cylinder, four-stroke, turbocharged Dl diesel engine was connected to a 150 HP 

General Electric model TLC2544 DC electric dynamometer. The engine in which the fuel 

is injected into a chamber directly above the piston crown is called DI diesel engine while 

in indirect-injection (IDI) engine the fuel is injected into an auxiliar\' combustion 

chamber which is separated from the main combustion chamber by a flow restriction or 

nozzle. The basic engine specifications are provided in Table 3.1. A GE Siltron 

dynamometer controller controls the d\"namometer. The dynamometer controls the speed 

of the engine and the rack position of the fuel injection pump controls the output torque. 

The atmospheric pressure was measured with a Datametric Barocel pressure 

sensor. Boost pressure, exhaust pressure, and engine lubricating oil pressure were 

measured with bourdon pressure gages. 

Table 3.1 John Deere 4276T diesel engine specification 

Bore 

Stroke 

106.5 mm 

127.0 mm 

Connecting rod length 202.9 mm 

Compression ratio 16.8:1 

Maximum power 

Peak torque 

Firing order 

57.1 kW@2100 rpm 

305.0 Nm @ 1300 rpm 

1-3-4-2 



www.manaraa.com

Kistler model 606IB and model 6230M1 pressure transducers were installed in 

the engine. The model 606IB was installed in the engine cylinder head to measure the 

cylinder pressure. The model 6230MI was installed in the injection line to measure the 

fuel injection pressure. These pressure transducers were used to measure the pressures at 

every quarter degree of crankshaft rotation for 50 engine cycles. The av erage of 50 cy cles 

data was saved in the computer for later analysis. The calibration of the pressure 

transducers is presented in Appendix C. 

A PCB model 462A charge amplifier was used to amplify the pressure signal and 

a computer collected the pressure data. The pressure signal was recorded by a computer 

through a National Instruments ATMIO-16 data acquisition board. 

.A Meriam laminar flow element was used to measure the volume flow rate of air 

into the engine. .An electronic scale and a stopwatch were used to measure the fuel flow 

rate. 

33 Emission Measurement Equipment 

33.1 Gaseous emissions equipment 

A schematic of the gaseous emission measurement system is shown in Figure 3.3. 

.A portion of the exhaust gas was drawn directly from the exhaust pipe with a \ acuum 

pump located in a temperature-controlled oven. After necessary filtering, a portion of the 

sample passed through the HC analyzer. The rest of the sample gas passed through a 

condenser to remove the water. The dry sample was then distributed to the analyzers. 

Two Beckman model 864 infrared analyzers measured die concentrations of carbon 
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Figure 3.3 Schematic diagram for gaseous emissions measurement system 
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monoxide (CO) and carbon dioxide (CO2) in the engine exhaust. A Theimo 

Environmental Instruments Inc. Model 42H chemiluminescent NO-NO^-N'Ox analyzer 

and a Thermo Environmental Instruments Inc. Model 350 chemiluminescent NO-NO;-

NOx analyzer were used to measure the concentrations of NO and NOx. Three other 

NO/NOx analyzers were used for comparisons to make sure the collected data were 

correct. 

The sampling lines were maintained at positive pressure after the oven pump. The 

reason for maintaining the positive pressure was so that if leaks develop, they will leave 

the system without contaminating the sample. As an additional confirming test, 

sometimes the calibration was performed by supplying the calibration gas at the near end 

of the analyzer and then supplying the same calibration gas at the far end of the analyzer 

to make sure that the concentrations were the same. 

The sample for the hydrocarbon anah'zer passed through a 190"C heated sampling 

line. The oven also maintained the vacuum pump at a 190*^C temperature throughout the 

test. .A Beckman model 402 heated flame ionization detector hydrocarbon analyzer and a 

Beckman model 7003 polarigraphic oxygen monitor were used to measure die 

concentrations of unbumed hydrocarbon (HC) and the oxygen in the exhaust gas. .A 

Bosch smoke meter was used to measure the smoke level. 

33.2 Biodiesel oxidation process 

To establish the effect of oxidized biodiesel on the exhaust emissions it was 

necessary to oxidize the biodiesel. The oxidation of the biodiesel required approximately 
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one day. The oxidation process involved a 55-gallon barrel, a heating tape, a temperature 

controller, an oxygen cylinder, and a flow meter. The schematic diagram is shown in 

Figure 3.4. Hourly sampling was necessary to get the correct upper level of the oxidation 

range. It was desired to elevate the fuel peroxide value quickly without allowing the fuel 

v iscosity to increase excessively. A total of three batches of 22 gallons of biodiesel each 

were oxidized to prepare the tliel. Each batch of biodiesel was sufficient for one three-

day test sequence. 

Three eighths of an inch stainless steel tubing was used to supply oxygen into the 

barrel. .A. tliermocouple was connected to an Omega Model CN9000A temperature 

controller to control the temperature in the barrel. A flexible electric heating tape was 

used to heat the fuel in the barrel. Once the fiiel temperature reached 60 '^'C. pure oxygen 

was bubbled into the biodiesel. The temperature was selected to be 60 because it was 

found earlier that the biodiesel oxidized faster at this higher temperature. Samples were 

collected each hour and their peroxide value were measured. Sampling was continued 

until the peroxide value of the fuel reached 340 meq 0:/kg. At this point the oxidation 

process was stopped and the fuel was allowed to cool down to room temperature. Figure 

3.5 shows the typical increase in peroxide value as the fiiel was oxidized. 

3.3.3 Emissions data collection procedure 

Fuel with two different oxidation levels, unoxidized (PV = 28 meq 0:/kg) and 

oxidized (PV = 340 meq 0:/kg) biodiesel fuel were blended with No. 2 diesel ftiel to 

make blends of 20% biodiesel and 80% diesel fuel. The neat biodiesels (100%HPV and 
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Figure 3.4 Schematic diagram for biodiesel oxidation rig 



www.manaraa.com

50 

100 

50 

0 

0 A 8 10 6 

I inic, hr 

Figure 3.5 Hiodiescl oxidation at 60" (' 
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100%LPV). 20% blends (20%HPV and 20%LPV). and the base fuel (No. 2 dlesel) were 

tested at different loads (100% and 20%) and timings (3^' advanced, standard. 3" 

retarded). The tests were performed at steady state conditions at a single engine speed of 

1400 rpm. The fuels and the test schedule are shown in Table 3.2. 

3.4 Data .Acquisition System 

The cylinder and injection pressure data were measured using the Labview 

program with a 486 computer and a National Instruments Model .\TMI0-16 data 

acquisition s\ stem. This system and related equipment are described in this section. TTie 

section is divided into three parts. The first part describes the shaft encoder. The second 

part describes the pressure transducers and the final part describes the charge amplifier. 

3.4.1 Shaft encoder 

.A. BE I Electronics. Inc. Incremental Optical Encoder (Model H-25) was used as an 

external pacer for the data acquisition process. The encoder was directly coupled to the 

engine shaft. The encoder consists of a transparent rotating disc with ver>' fine lines 

etched onto it. These etched lines provide alternating dark and transparent spaces. .A. light 

source illuminates the disc while it rotates, and an alternating signal is produced uhen the 

etched lines block the light. An optical sensor measures the alternating signal. The disc 

has two sets of etched lines. The outer circle has only one etched line and the inner circle 

has 1440 etched lines (one for every quaner of a degree). A reference pulse is given when 

the single fine line (outer circle) blocks the light once per revolution. The other output 
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Table 3.2 Engine test conditions and fuels 

1400 RPM. Standard injection timing 

100% of fiill load 20% of fiill load 

j Low peroxide value 
; biodiesel (LPVB) 
I 

2D 
20%LPVB 
100%LPVB 

2D 
20°/oLPVB 
100%LPVB 

High peroxide value 
340 biodiesel 

' (HPVB) 

2D 
20%HPVB 
100%HPVB 

2D 
20%HPVB 
100%HPVB 

1 
1400 RPM. 3^ ad\ anced injection timing 

I 100% of full load 20% of full load ' 

t 

1 Low peroxide value 
; biodiesel (LPVB) 
j 

2D 
20%LPVB 
100%LPVB 

2D 
20%LPVB 
100%LPVB 

! 

• High peroxide value 
^ 340 biodiesel 
i (HPVB) 

2D 
20%HPVB 
100%HPVB 

2D 
20%HPVB 
100%HPVB 

1400 RPM. 3" retarded injection timing 

! 
100% of full load 20% of fijll load 

1 

1 
! Low peroxide value 
' biodiesel (LPVB) 
i ( 

2D 
20%LPVB 
100%LPVB 

2D 
20%LPVB 1 

100%LPVB ' 

j High peroxide value 
' 340 biodiesel 
! (HPVB) 

2D 
20%HPVB 
100%HPVB 

2D i 
20%HPVB i 
100%HPVB I 

2D; No.2 diese! fuel 
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gives 1440 pulses per revolution. An electronic circuit inside the encoder converts the 

signal from the optical sensor to a clean, sharp square wave. 

The one pulse per revolution (ppr) signal is called the 'Z" signal, and the 1440 ppr 

signal is called the 'A' signal. The "Z" signal is timed to occur precisely when the piston 

of the engine is at the bottom of the stroke. The "Z" pulse will then be used to start the 

data acquisition system so that it begins to take data at the bottom of the stroke. The ".A" 

pulse will be used to trigger the data taking process. Once the "Z" pulse starts the data 

taking process, the "A" pulse tells the data acquisition system when to take the pressure 

data. The system takes the pressure data when the "A" pulse undergoes a low-to-high 

transition. When the process is started by the 'Z' pulse, the data acquisition system will 

take the pressure data every quarter of a degree (1440 data points) for each revolution, 

and the process will continue for 50 cycles. The data acquisition system outputs a single 

cycle, which is the average of pressure measurements for 50 cycles. 

3.4.2 Pressure transducer 

Technical specifications and calibrations of the Kistler .Model 6061A and .Model 

6230.M1 pressure transducers are described in Appendix C. The operating principle of the 

pressure transducer is that when a quartz crystal is mechanically stressed it produces an 

amount of electric charge that is proportional to the magnitude of the stress. The 

transducer has a thin diaphragm welded to its body. When subjected to pressure this thin 

diaphragm deflects inward and pushes the crystal. \\Tien pressure develops, the electric 

charge produced by the sensor is converted into a proportional voltage in the charge 
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amplifier. Highly insulating and low-noise connecting cables are used with these 

transducers. 

One difficulty arises with piezoelectric transducers during use. They do not hold a 

constant baseline output. The output voltage corresponding to a fixed pressure changes 

slowly with time. Piezoelectric measuring systems are suited primarily for measuring 

rapidly changing phenomena. Static measurement over any length of time is impossible. 

In principle, only pressure changes are measured, usually relative to atmospheric 

pressure. 

3.43 Charge amplifier 

A basic laboratory charge amplifier, the PCB Piezotronics .Model 462A was used 

to convert the electrostatic charge signals from the piezoelectric transducer into 

proportional output voltage signals. This voltage signal can be read in equivalent pressure 

units by properly setting the charge amplifier sensitivity and range selector switch. 

Before taking pressure data, the "OPERATE-GND" switch is always switched to 

the GND position. This operation discharges accumulated static charge which might 

contribute false pressure to the data. 
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4. DATA COLLECTION AND ANALYSIS 

4.1 Statistical Analysis 

As was mentioned before, biodiesel is a biodegradable fuel. That is. when it 

comes into contact with air it oxidizes. This oxidation is a function of time, light, heat etc. 

Currently there is no technology available to stop this oxidation process but it can be 

delayed by taking out some of the sources of oxidation. In practice, there will always be 

some sources a% ailable to oxidize the biodiesel. In this experiment, two different levels of 

oxidized fuel were investigated. Since time is a factor that affects oxidation, the age (day) 

effect is important to consider. 

The highly oxidized biodiesel was prepared in the laboratorv where working uith 

large amounts of fuel can pose a safety problem. Also, on-going oxidation was another 

reason not to prepare a single large volume of fuel. Instead, three smaller batches of fuel 

were prepared. The variation of batch to batch oxidation was a variable that needed to be 

considered. The injection timing change also was a big factor to consider. Considering all 

these factors, the split-plot was the most appropriate design for this experiment. It is 

called the split-plot design because it had its origin in agricultural experimentation. 

The engine emission measurement experiment was designed in such a way that 

the objectives of this project could be accomplished. Initially, different statistical designs 

were considered for this project. The factorial design was the first one suggested. 

Because of some limitations like injection timing setup, day to day variation, fuel 

preparation, and the age of fliel. the complete factorial design was not appropriate for this 
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project. Instead, a split plot design seemed to be the most appropriate for this kind of 

project- In factorial design, a variable like the injection timing needed to change sev eral 

times in a single day test which was not practically possible. This can be considered as a 

limitation. 

The split plot design consists of two stages. The first stage is related to the w hole 

plot and the second stage is related to a subplot. This design is thus could be named a 

split plot design with a day as a "whole plot" and each of the ten runs within a dav as a 

"sub-plot". This split plot design is shown in Table 4.1. The whole plot is a 3x3 Latin 

square and within each whole day plot is a 2x5 factorial experiment. A 3x3 Latin square 

design contains 3 rows and 3 columns. The three treatments (injection timings) are 

randomly assigned to experimental units within the rows and columns so that each 

treatment appears in every row and in ever>' column. .A. factorial experiment is an 

experiment in which the response of dependent variables (emissions, fuel consumption 

etc.) is observed at all factor-level combinations of the independent variables. More 

extensive explanation of these topics is provided in Ott [511 and Neter et al. [52]. 

-A. SAS program was used to analyze the collected data. The program output was 

then tabulated in the analysis of variance (ANOVA) table which is presented in the 

Results and Discussion chapter. Also, another form of statistical analysis data called 

Tukey's grouping table was computed and is shown in Appendi.x D 
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Table 4.1 Split plot design 

(a) \\'hole plot (3x3 Latin square) 

i\^Age 

, BatchN^ 

I 3 

^ Standard y advanced 3" retarded 

1 (da\ 1) (day 2) (day 3) 

3" retarded Standard 3" advanced 

-> 1 (dav 4) 
i 

(day 5) (day 6) 

j 

: 3'' adv anced 
1 

3" retarded Standard i 

i J 
1 

i (dav 7) , (day 8) (day9) 

(b) Randomly assigned subplot within each whole plot (2x5 factorial experiment) 

Fuel 

Load 1 100%HPVB 100%LPVB 20%HPVB 20%LPVB 

T— 1 1 

: N0.2D 

100% load IQm 5 th 9th 3rd 1 1st 

. 20% load 4th 8th 7th 6th i 2nd 
) 

4.2 Data Analysis 

The emissions data calculation process is presented in this section. All data were 

reported on a brake specific basis. Brake specific emissions are the mass flow rate of 

emissions divided by the brake power. Representing the data on a brake specific basis 

allows comparisons to be made between different sizes of engines. The first section 
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describes the calculation process for the gaseous emissions. The second section presents 

the humidity correction process for the oxides of nitrogen. 

4.2.1 Gaseous emissions 

The emissions data were taken for each fuel at one-second intervals for two 

separate five minute periods inter\ als. The first set of data was taken with the N'Ox NO 

meter set for NOx emissions and the second set of data w£is taken for NO emissions. The 

data were then averaged to obtain the emissions data. It is general practice to express the 

emissions data on a "brake specific" basis. Brake specific emissions are the mass flow-

rate of the pollutant divided by the engine power. 

A chemical equation for the combustion of the fuel was necessary to calculate the 

brake specific emissions from the measured exhaust concentration. The equation below is 

the balanced chemical equation for diesel fuel, assuming complete combustion. 

C.H.O, - (A/F) (0.21 O; + 0.79 N;) = B {y coi.d:y CO: - y o:.dn O; - y N':) ' C H:0 (4-1) 

where x = number of carbon atoms in an average fuel molecule 

y = number of hydrogen atoms in an average fiael molecule 

z = number of oxygen atoms in an average fiiel molecule 

yi.dr>= mole fraction of chemical species on a dr\- basis 

A/F = molar air/fiiel ratio 

B = number of moles of dry products per mole of fuel 
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C = number of moles of water per mole of fuel 

This chemical equation can be solved by atom balance for B and C. Expressions 

for B and C are shown below. 

B = {.VF)-z./2-y/4 (4-2) 

C = y/2 (4-3) 

Using the measured emissions data the above equations were solved on a brake 

specific (BS) emissions basis. The brake specific equations are as follows. 

BSC02= [kmol CO^/kmol dpg] x [kmol dpg/Tonol fuel] x [kmol fijel/kg fuel] 

X [kg fueL^j X [kg COi/kmol CO:] ̂  [1/kW] (4-4) 

= [Vcoz] X [B] X [l/MWftiel] X [mfuel'l] X [MWco2/ll x [l/kW] 

= kg/kW-hr 

BSCO = [kmol CO/kmol dpg] x [kmol dpg.'lcmol fiiel] x [kmol fuel/k^g fuel] 

X [kg fiiel/hr] x [kg CO/kmole CO] x [LIcW^ (4-5) 

BSNO = [kmol NO/'kmol dpg] x [kmol dpg/kmol fuel] x [kmol fuel/Tcg fuel] 

X [kg fuel/hr] x [kg NO/kmol NO] x [l,4cW] (4-6) 

BSNOx= [kmol NOx/kmol dpg] x [kmol dpg/kmol fuel] x [kmol fuel/kg fuel] 
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X [kg fuel/lir] X [kg NOx/lonol NOx] x [1/lcW] (4-7) 

BSHC = [kmol HC/kmol v\pgj x [kmol wpg/Tcmol fuel] x [kmol fuel'kg fuel] 

X [kg fueL^hr] x [kg HC/kmol HC] x [McW] (4-8) 

where dpg = dr>' product gas 

wpg = uet product gas 

MW = molecular weight 

M = mass flow rate, kg/hr 

kW = brake power. kW 

kmol = killo mole 

4.2.2 Humidity' correction factor for oxides of nitrogen 

The correction of the oxides of nitrogen emission for the effects of humidity 

followed the procedure recommended by the Society of Automotive Engineers [53]. The 

specific humidity of the engine intake air. h. is computed from the following equation. 

h-621.10 X Pv /(Pb-Pv) (4-9) 

where h = specific humidity, g H^O/Tcg dry air 

Pb= observed barometric pressure, kpa 

Pv= partial pressure of water vapor, kpa 
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Ferrers equation [54] listed below provides the partial pressure of water vapor. 

Pv- calculation. 

where P„ = saturation pressure of water vapor at the wet bulb temperature, kpa 

Tj= dr\" bulb temperature. "C 

T„= wet bulb temperanire. ''C 

A= experimentally derived constant = 3.67 x 10~* (1-^ 0.001152 T^) 

The saturation pressure of water vapor at the wet bulb temperature is a least 

square fit to Keenan and Keye's steam table [55]. which is shown below. 

P,,= 0.6048346 ^ 4.59058x10'- ^ 1.2444xlO '" Tv^" - 3.52248x 10"" - 9.32206x10"'' 

where Pvv= saturation pressure of water vapor, kpa 

T«,= wet bulb temperature. "C 

The corrected oxides of nitrogen concentration can be calculated as the Society of 

.A-utomotive Engineers recommends [53]. 

P v - P w -  1 . 8 0 A X  P t , ( T d - T H  )  (4-10) 

Tw"* -4.18128x10'" Tw" (4-1 n 

NOcorr=NO.e,xl/K (4-12) 
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Where NOcorr = corrected NO concentration, ppm 

NO^vet = measured NO concentration on a wet basis, ppm 

K= 1- 7A( h-10.714 ) + 1.8 B ( T - 29.444 ) 

0.044 (F A)-0.0038 

B= -0.116 (F A)-0.0053 

T= intake air temperature. '^C 

F/.\= fuel-air ratio (drv- basis) 

h= specific humidity, g H20/kg dry air 

4.3 Analysis of Cylinder Pressure 

Two sets of cylinder pressure data were taken at each operating condition. Both 

sets consisted of 50 cycles of averaged data taken everv' quarter in a degree. The large 

number of cycles were collected to cancel out the random noise. These data were 

intended for use in calculating heat release rates. 

The voltage le\els provided by the data acquisition system were converted to 

pressures following procedures recommended by Lancaster, et al. [56]. The sensitivit> of 

the transducer measured calculated using a dead weight tester. The piezoelectric 

transducers do not hold an absolute pressure so it was necessar\' in this experiment to 

establish an absolute reference pressure. It was assumed that the pressure at the bottom 

dead center (BDC) before compression was equal to the intake manifold pressure. 
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4.4 Analysis of Injection Pressure 

The injection pressure data taking procedure is the same as the cylinder pressure 

data collection The two sets of injection pressure data were taken at each operation 

condition Both sets of data consisted of 50 cycles of averaged data taken at 0 25" 

intervals These injection pressure data were taken immediately after the cylinder 

pressure data. The same data acquisition system was used to collect both. To eliminate 

the random noise, fifty cycles of data were necessarv These data were intended for use in 

estimating the ftiel injection timing. 

The data acquisition system provided the voltage levels These voltage levels 

were then converted to pressures The sensitivity of the transducer was collected from its 

manufacturer-supplied calibration certificate The specifications for this transducer are 

shown in Appendix C 

The data triggering technique is the same as for the cylinder pressure data. Sample 

injection pressure profiles are shown in Figure 4 1 These pressure profiles reveal the 

presence of large amplitude pressure waves in the injection pressure. These pressure 

waves may not be the characteristic of the actual injection pressure Tadakazu et al. [57] 

describe how the pressure wave moves back and forth in the injection line. .According to 

the authors, when the lliel is subjected to high pressure, a positi\ e pressure zone moves 

forward inside the tube .At the end of the injection nozzle, this positive pressure inverts 

to a negative pressure zone and moves backward These positive and negative pressures 

are responsible for the large amplitude waves in the injection pressure profiles. 
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Figure 4.1 Injection pressure 
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4.5 Calculation of Ignition Delay 

The ignition delay in a diesel engine was defined as the time (or crank angle) 

between the start of ftiel injection into the combustion chamber and the start of 

combustion The start of injection is usually taken as the time when the injector needle 

lifts off Its seat (determined fi'om the injection pressure data) The stan of combustion is 

more difficult to determine precisely Henein and Bolt [58] defme three possible 

definitions of ignition delay The first is the illumination delay, the second is the 

temperature rise delay and the last is the pressure rise delay The illumination delay is 

defined as the time between the start of injection to the stan of the luminous flame in the 

engine. Temperature rise delay is the time from the start of injection to a specified 

cylinder-averaged temperature rise due to combustion. Similarly, the pressure rise delay 

is the time between the start of injection and a specified pressure rise due to combustion. 

,^n alternative to these three definitions of ignition delay is to calculate the heat release 

rate and use it as the basis of the stan of combustion as suggested by Van Gerpen [59] In 

this study, the stan of combustion was defined in terms of the change in slope of the heat-

release rate which occurs at ignition. The definition of ignition delay used in this study 

was the time between when the injection line pressure had reached 207 bar and w,hen the 

slope of the heat release rate determined fi-om the cvlinder pressure data, had started to 

rise rapidly. Measurements of the injection's nozzie-opening-pressure had shown that the 

fuel injected into the cylinder at an injection line pressure of 207 bar The next section 

more completelv describes the techniques used to determine the stan of combustion from 

the heat release rate 
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4.6 Heat Release Analysis 

4.6.1 Calculation procedure 

Heat release rate calculation is a useflil tool for investigating diesei engine 

combustion The most basic model for this heat release rate begins with the first law of 

thermodynamics The basic heat release rate calculation was extended by Krieger and 

Borman [60] to obtain an apparent fuel mass burning rate VValson. Pilley. and Marzouk 

[61 ] proposed an empirical correlation for the mass burning rate Many other researchers 

have also investigated, and extended the work related to heat release rate calculation [62. 

63], .All these advanced methods use sophisticated methods for calculating the gas 

propenies One of the more sophisticated models for calculating the gas properties was 

presented by Olikara and Borman [64], These sophisticated techniques make the heat 

release calculation v ery complex. For simple determination of the start of combustion a 

more simple heat release rate calculation is adequate 

Simple methods of analysis which yield the rate of release of the ftiel's chemical 

energy (often-called heat release), through the diesei engine combustion process are 

described in this chapter. The method of analysis begins with the first law of 

thermodynamics and three basic assumptions. The first assumption is that the trapped 

charge is contained in a uniform single zone of constant composition from intake valve 

closing to exhaust valve opening The second assumption is that the charge inside the 

cylinder behaves as an ideal gas. The third assumption is that the energy released by 

combustion can be modeled as a heat addition to the cylinder Based on these 
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assumptions the heat release rate can be derived. This heat release rate is lumped together 

with the heat loss. From the first law: 

dt - dt 

Where: Q is the combination of the heat release rate and the heat-transfer rate across the 

cylinder wall. 

W is the rate of work done by the system due to system boundar> displacement. 

The ideal gas assumption can be used to simplify the equation (4-14). 

PV = mRT (4-15) 

\Miich can be differentiated to give: 

I ,4-16) 
dt mR \ dt dt ) 

.\fter combining these two equations, the heat release rate equation becomes. 

^ C ^ dV C dP 
^ + 1  p  —  ( 4 - 1 7 )  

{ R dt R dt 
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Replacing time (t) with crank angle 9. the above equation becomes 

d\' 1 dp ' ' ' 
O  =  ̂  P  — +  — — r  —  

y + \ J 6 7 - 1  dO 

Where y is the ratio of specific heats, Cp/ Cv An appropriate range for y for diesel heat-

release analysis is 13 to 1 35. Equation (4-18) is often used with a constant value of y 

within this range [65] The appropriate value of y during combustion which will give the 

most accurate heat-release information is not well defined [66, 67], but the equation is 

more than adequate for predicting the start of combustion 

4.6.2 Heat release vs. crank angle profiles 

A sample heat release rate profile, calculated from experimentally obtained 

cylinder pressure data according to the above procedure, is shown in Figure 4.2 The 

injection timing for the particular case shown was 17" BTDC and the start of combustion 

was about 9. l"" BTDC So the ditTerence between these two is the ignition delay of 7 9" 

BTDC It can be observed that the heat release rate is slightly negative during the delay 

period. This is due to heat loss fi'om the cylinder and the cooling effect of the tuel 

vaporizing as the fuel is injected to the cylinder. The initial phase of combustion is 

observed to be very rapid. This is because of the combustion of the tliel which has mixed 

with air during the ignition delay period occurs rapidly in a few degrees of crank angle 

and when this burning mixture is added to the fuel, the fuel burns ver\' rapidly This is 

characterized as the premixed or rapid combustion phase. 



www.manaraa.com

No. 2 (liesel at full load 

-20 -15 -10 0 5 10 15 20 25 30 35 40 

Crank Angle (degree) 

Figure 4.2 Heat release profile at full load 
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The duration of the premixed combustion for the case shown is about 4 1' 

Following the premixed combustion is the slow phase of combustion which continues 

until most of the tiiel is burned This phase of combustion is called the mixing-controlled 

combustion phase. The final phase of combustion that occurs fi'om about 30"'ATDC to the 

end of the expansion stroke is characterized as the late combustion phase 

4.6.3 Cylinder pressure smoothing technique 

The heat release rate equation (4-18) has two derivative terms One is the time 

derivative of volume which is an easily calculated quantity The other is the time 

derivative of pressure which may contain some oscillations. In the burning rate equation, 

the pressure and the time derivative of pressure are important quantities The pressure 

data collection technique was explained in the experimental section and the derivatives of 

pressure data can be obtained by differentiating the pressure data. Error in the pressure 

data or in the differentiation process will cause corresponding errors in the heat release 

rate Austin and Lyn [68] pointed out that a I'' error in the pressure measurement can 

cause a 50°o error in the heat release rate. \'an Gerpen [59] also showed that small 

oscillations in the pressure data can cause errors in the heat release rate curve. So. the 

extremely sensitive heat release rate calculation requires not only accurate pressure data 

but also requires a robust technique for the numerical differentiation. .A. four point 

difference approximation was used to ditTerentiate the pressure data. In the tluid 

mechanics and heat transfer area, most of the panial differential equations which involve 

first and second-partial derivatives use values at only two or three grid points Lsing 
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these two or three data points, the most frequently used first-derivative approximations 

on a grid arc the forward, backward, and central difference representations. All three of 

these representations for the first derivative were tested and failed to provide better 

results. Instead they provided ver> noisy pressure derivatives. this stage, a four point 

ditTerence representation was taken in consideration and successfully provided the better 

result. The first-derivative approximation using four points was; 

(du/dx), - (-u 1-2 - 8 u ,-i - 8 u ,.i ^ u (12 x A Q )  (4-19) 

where i = data locations in x. y directions. 

u , = pressure at the location of i. 

A0 = crank angle inter\ al between i and i-I. 

.-Msg. the pressure data required some smoothing to reduce the unwanted noise, 

particularly from oscillations in the pressure data. 

Van Gerpen [59] observed that the cases of worst oscillation correspond to cases 

of high initial rate of heat release. Based on his observation, it was concluded that the 

oscillations in the pressure data that manifested themselves in large oscillations in the 

heat release were probably local fluctuations due to pressure waves induced by the rapid 

rate of pressure rise at the start of combustion. He also mentioned that the pressure 

integrated over the piston face, which is the important quantity for calculating the work 

output of the engine, is probably relatively smooth and not affected by the local 

fluctuations. Since the cylinder pressure is the most important quantity required for the 

burning rate calculation, he suggested removing the pressure fluctuations. The remo\al of 
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the pressure fluctuations was necessary in order to calculate an acceptable heat release 

rate Figure 4 3 shows the typical heat release rate before and after smoothing The upper 

figure shows the unacceptable oscillation in the heat release rate calculation caused by 

oscillations in the pressure data. Smoothing is necessary to get some meaningful 

information from this heat release curve 

A smoothing technique suggested by Hamming [69. 70] called Digital Filtering" 

reduces the noise dramatically Van Gerpen [59] also found that this technique was 

reasonable Digital fdtering is the numerical process in which a new set of data is 

produced which has different frequency characteristics. The techniques used for this 

study are as follows; 

g,= l/2(f,., - f.-i) 

h, = 1/3 (g,.i ' gi * g,.|) 

(4-20) 

(4-21) 

Where f, = the original data 

g, = intermediate value 

h, = the filtered data 

Figure 4 4 shows the unsmoothed and smoothed pressure vs crank angle curve 

The changes in pressure derivatives are shown in Figure 4 5 The large amplitude 

oscillations in the derivative curves are mostly gone while the large peak due to the rapid 

combustion is reduced somewhat but still prominent 
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5. RESULTS AND DISCUSSION 

In this chapter, the effect of oxidized biodiesel on peroxide value, acid value, and 

\ iscosity are presented in the first section. These properties characterize the oxidative 

stability of biodiesel. The diesel engine performance when the engine is fueled with 

oxidized and unoxidized biodiesel and their blends at three ditTerent injection timings are 

discussed in the second section. The second section also includes the emissions of CO;. 

CO. HC. NOv and smoke level for oxidized and unoxidized biodiesel and their blends at 

different injection timings. The injection pressure, start of combustion, and ignition delay 

for oxidized and unoxidized biodiesel and their blends at three different injection timings 

are discussed in third section. The last section presents the effects of ignition delay and 

start of combustion on engine emissions. 

5.1 Effect of .\ging OD Oxidation of Biodiesel 

Biodiesel oxidizes with time when it contacts oxygen. This oxidation does not 

need any external initiation, but external initiators such as heat, light, and metals help 

biodiesel to oxidize faster. This oxidation ma\ be detlned as biodiesel aging. The 

biodiesel aging effect on ftiel chemistr>' and fuel properties are discussed in the next tour 

sub-sections. More specificalK . the first, second, and third sub-sections discuss the effect 

of biodiesel oxidation on the peroxide \ alue, acid value, and the viscosity respectively. 

The fourth sub-section describes the interrelationships between peroxide value, acid 

value, and viscosity. The oxidative stability of biodiesel is discussed in the last section. 
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5.1.1 Effect of oxidation on the peroxide value of biodiesel 

Hydroperoxides are the initial product of the oxidation of biodiesel. The level of 

this initial product is characterized by the peroxide value. These peroxides split and form 

aldehydes, ketones, and finally short chain acids. The level of these short chain acids is 

called the acid value. Sediment and gum formation are also associated with produced by 

oxidation. The level of peroxide value and acid v alues are measured by .A.OCS tests. The 

gum and sediment are measured by ASTM tests. Since the peroxide value, acid value, 

and gum and sediment are all oxidation products, there must be same relation between 

these properties. To establish a connection between the .A^STVI tests and the .A.OCS tests, 

the peroxide value, acid value, and viscosit} were measured for a set of accelerated 

oxidative stability tests. 

In order to understand the effect of oxidation on the properties of biodiesel fuel, 

five tests were conducted using the fuel filter test apparatus described in Section 3.1. Two 

of them were with 20% and 50% biodiesel in No. 2 diesel fuel at 60 The blend ot 

20*^ 0 biodiesel at 60 ''C was tested tor 60 days. At the end of 60 dav s the fuel pump failed 

which terminated the test. The blend of 50% biodiesel at 60 "C was tested for 74 days 

before the fuel pump failed. Two otlier tests were conducted with 20% and 50% biodiesel 

in No. 2 diesel fuel at room temperature (23 "^C). The 20% biodiesel at room temperature 

test was conducted for 190 days. At the end of this test the pump had not failed 

completely but it had started to show signs of impending failure, such as increased noise 

level. The test of 50% biodiesel at room temperature was conducted for 87 days before 

the fuel pump failed. The final test was iOO% biodiesel at 60 "C that ran for 38 days. .At 
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the end of this test the fuel pump failed and the test was concluded. The failure of these 

pumps should not be interpreted as an indication of the quality of the pumps or any 

incompatibility between the pumps and biodiesel. During the test the flow rate was 

monitored and as it dropped due to increased fiiel viscosity, the voltage applied to the 

pump was raised to compensate. Generally, by the end of the test, the voltage applied to 

the pump was above the manufacturers recommendations and this was the probable cause 

of failure. 

TTie pero.Kide values are shov\ti in Figure 5.1. It can be seen that all five tests 

demonstrated similar behavior. The peroxide value (PV) rises to a level between 300 and 

400 meq. 02/lcg and then drops off. The three cases at 60 °C went through this process ot 

rise and fall of PV within the first 1000 hours. The 100% biodiesel went through the 

cycle in the least time and the 20% biodiesel was the slowest. The two runs at room 

temperature were similar but much slower, both for the initial rise in PV and the 

subsequent return. 

The initial PV for 100% and 50% biodiesel at 60 ''C were 41.4 and 34.1 meq. 

O^'Tcg. But the initial peroxide value for 20% biodiesel at 60 ''C was only 3.1 meq. 0:'kg. 

This is primarily due to dilution of the biodiesel with diesel fiiel since the diesel tuel does 

not readily form peroxides. The oxidation rate is known to be proportional to the 

peroxide value [74]. Fuel that already has a high peroxide value will oxidize more 

rapidly. The 20% blend has less biodiesel so the peroxide value will automatically be 

reduced by a factor of 5 from the neat biodiesel. If the initial pero.xide value is low. then 

the induction period will be longer. The rate of decrease ot peroxide value ot 100% 
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biodiesel at 60 'C is larger than the other blends. The drop in peroxide value for the 20" o 

biodiesel at 60 occurred sooner than for the 50% biodiesel at 60 'C. The rate of 

decrease of peroxide value of 20% and 50% biodiesel at room temperature is much less 

than the 20'''o and 50% biodiesel at 60 "C. The peak peroxide values for the 100®o and 

50% biodiesel at 60 ''C are 371 meq. 02/kg at the 110th hour and 373 meq. O: kg at the 

216th hour respectively. The peak peroxide values of the two blends. 20" o biodiesel at 60 

and 20% biodiesel at room temperature, are 331 meq. O^'kg at 268th hour and 323 

meq. O^/kg at the 3249th hour respectively. These four peak peroxide values are close but 

the peak peroxide value for 50°/o biodiesel at room temperature was 436 meq. 02/kg 

which is somewhat higher than the other blends. The rise of peroxide value for any blend 

of biodiesel at any temperature is somewhat constant and lies between 320 meq O2 kg to 

450 meq 02'Tcg. 

Miyashita et al. [71] investigated the autoxidation rates of various esters of 

safflower oil and linoleic acid. They found that the peroxide value increased rapidly after 

the induction period of autoxidation. but then decreased. The maximum peroxide value 

was recorded to be about 2000 meq 02'lig for the methyl ester. The> used the 

Calorimetric Iodine method [72] to measure the peroxide value. Gan et al. [73] 

investigated the effects of epoxidation on the thermal oxidative stabilities ot fatty acid 

esters deriv ed from palm oline. The fuel tested in their research was methyl ester of palm 

olein. They recorded the maximum peroxide value to be about 300 meq O^/kg at the 288'^ 

hour. This result was close to that observed in this experiment. 

The PV reaches a maximum and then drops off probably because of the solubility 
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of O: in the ester. Once the induction period is over the oxidation proceeds rapidh to 

consume all the ox> gen that is dissolved in the ester. When this oxygen is consumed, the 

rate drops off to the rate that can be sustained by diffusion of 0: into the ester from the 

air surface. 

5.1.2 Effect of oxidation on the acid value of biodiesel 

To further understand the effect of oxidation on biodiesel. the acid values of the 

fiiel samples described abo\ e were also measured. The results of the acid \ alue tests are 

shown in Figure 5.2. The acid value for all the blends increased with time, but the rate of 

increase of acid \'alue was different for the different fuel blends. It is clear from Figures 

5.1 and 5.2 that the acid value starts to increase at a slighth later time from where the 

peroxide value starts to increase. The rate of increase of acid value is higher until the 

point where the peroxide value returns to a low value. Beyond this point the acid \alue 

increases slowly which indicates a slower rate of oxidation. For example, for 20°/o 

biodiesel at 60 "C. the peroxide \alue started to increase faster at the 192"^ hour and 

returned to a low value at about the 500"^ hour. In betv\een these two points the rate ot 

change of acid value was 0.01 mg KOFl'g per hour higher than the point after the 500'^ 

hour. .A. similar effect was observed for the 50% biodiesel at 60 ''C. where the peroxide 

value started to increase faster at about the 19'*' hour and returned to a low value at about 

the 823'^'^ hour. In betvveen these two points the rate of change of acid v alue was 0.03 mg 

KOR g per hour higher than after the 823"^ hour. .After the 823"^ hour the slope 

decreased. For 100% biodiesel at 60 "C. the peroxide value increased rapidly right at 
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beginning and returned to a low value at about the 258"' hour. The rate of increase of acid 

value between these two points was higher. On this cur\e one of the acid \alue data 

points appears to be considerably off the curve. This could be a measurement mistake. 

The peroxide value starts to increase faster at about the 640"^ hour for the 50°b 

biodiesel at room temperature, but the rate of change of acid value starts to increase at 

about the 900''' hour and the acid value continued to increase. .A similar etTect is obser\ ed 

for the 20"'o biodiesel at room temperature. 

5.1.3 Effect of oxidation on the viscosit>' of biodiesel 

The viscosities of the test samples are shown in Figure 5.3. The viscosity of all 

the blends increased with time. The rate of change of viscosity increased rapidly at the 

beginning of the test for all blends that were at 60 ''C. This rapid increase in viscosity 

continued until the time where the rate of increase of acid value was a ma.\imum. .After 

this the rate of change of \iscosity increased more slowly than at the beginning. .A higher 

percent blend of biodiesel has a higher viscosity and rate of increase of viscosity than the 

lower percent of biodiesel. The temperature also has an effect on viscosity. The blends at 

60 '^C have a higher increase of viscosity than the blends at room temperature. The start 

of increase of \ iscosit\ is earlier for higher temperature fuel than for lower temperature 

fuel. The viscosity of 100% biodiesel at 60 ''C increased more rapidly at the beginning of 

the test than later. The rate of increase of the viscositv' up to about the 109"' hour was 

higher which v\as also the time when the rate of increase of the acid value was a 

ma.ximum also, and the highest peroxide value was observed. The viscosity for this 100° b 
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biodiesel started at 4.44 cS and ended at 67.43 cS. The final viscosities tor the 50°o 

biodiesel and 20°o biodiesel at 60 "C were 17.22 cS and 4.62 cS. respectively. The blend 

of 50% biodiesel at room temperature behaved differently from the other blends. The 

viscosity for this blend started to increase at the 825"^ hour and continued to increase until 

the 1234''^ hour where it decreased until the 1574"^ hour and then it stayed relatively 

constant. 

5.1.4 Interrelationships between peroxide value, acid value, and viscosity 

Figures 5.4 and 5.5 show the relationship between viscosit\ and acid value, and 

viscositN and peroxide value, respectively. A linear relationship was found between the 

viscosity and the acid value. For all blends at all temperatures, viscosity increased as the 

acid value went up. For the 20% biodiesel at 60 and at room temperature, the 

viscosity vs. acid value curves fall in top of each other, but the acid \ alue did not increase 

to as high a value for the room temperature case. The viscosity vs. pero.xide \.alue curv es 

shown in Figure 5.5 for the 20% biodiesel at 60 and at room temperature also fall on 

top of each other, but the peroxide value did not decrease to as low a \.alue at room 

temperature. For the 50''/o biodiesel at both 60 ''C and at room temperature, the \ iscosity 

vs. acid value curve shown in Figure 5.4. shows the same trend as the 20°'o blends until 

the viscosity reaches 8 cS and the acid \ alue reaches 7 mg KOH/g. then the \ iscosity and 

acid value for the 50°/o blend at 60 "C continues to increase while the \'iscosit> for the 

50° b biodiesel at room temperature stayed constant as the acid \ alue increased. 

Figure 5.6 shows the acid value vs. peroxide value curve. From this figure it can 
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be seen that the biodiesel blends can have high peroxide values while maintaining lou 

acid value. However, when the peroxide value stays constant at a high value or starts to 

decrease, the acid value starts to increase rapidly. 

5.1.5 O-vidative Stabilit}' of Biodiesel 

The .A.STM D2274 oxidative stability test method will be described in this 

section. The results of preliminary tests with this method are also presented. This test was 

performed as pan of an unsuccessful attempt to establish the relationship between the 

AOCS (.American Oil Chemists* Society) and the ASTM (.American Society for Testing 

and Materials) tests. 

5.1.5.1 ASTM D2274-94 test method for oxidative stability test 

The standard way to measure the oxidative stability of diesel fuels is with the test 

method described in ASTM (American Society for Testing and Materials) D2274. The 

method uses accelerated oxidizing conditions to determine the mass of insoluble material 

formed by the fuel oxidation. A 300 ml sample of fuel is oxidized at 95 "C for 16 hr while 

pure oxygen is bubbled through the sample at the rate of 3 L/hr. In the ASTM test 

method, one set of matched pair filters are used. Matched filter pairs are necessar\' 

because the bottom filter is used as a blank and the difference between the top and bottom 

filters is the gum and filterable insoluble. Finding a matched pair of filters is verv* 

difficult, so it was necessary to modify' the ASTM method. In the modified method used 

here, any two filters can used instead of a matched pair. Both the top (sample) and bottom 
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(blank) filter weights are measured before and after filtration of the sample. The filterable 

insolubles weight per 100 ml of sample (although the sample size is 300ml) can be 

expressed as follows: 

A=((Wta-^^tb)-(^^'ba-^bb)V3 (5-1) 

Where A = filterable insoluble weight per 100 ml of sample. g/'lOO ml 

Wta = Top filter weight after filtration, g/300 ml 

W,b = Top filter weight before filtration, g/300 ml 

Wba = bottom filter weight after filtration, g/300 ml 

Wbb - bottom tllter weight before filtration, g/300 ml 

To determine the filterable insoluble in the biodiesel fuel, several tests were 

performed by following the ASTM test method except for the calculation process 

described above. For all tests. 300 ml of biodiesel from a newly opened barrel of methyl 

soyate was used. Before performing the test all samples were filtered through two filters. 

For the actual test. 300 ml of pure filtered biodiesel was poured through the filter while 

applying a suction pressure of 80 kPa (12 psi). On completion of the filtration, three 

separate 50 ml volumes of isooctane were used to rinse the filter assembly. The two 

filters were then dried at 80 °C for 30 minutes, then cooled at room temperature for 

another 30 minutes before weighing. This procedure was followed for all tests. The 

results are shown in Table 5.1. 

For the first test, the top and bonom filter weight differences were 0.01478 g and 
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Table 5.1. Filterable insoluble for difTerent fuels 
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(1 1) 
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0.01501 g. respectixely. The large increase in weight for the blank filter was suspicious 

because it indicated that the biodiesel may not have been removed from the filter. The 

total filterable insoluble for this test is the difference between these two weights and was 

-0.00023 g. The sample for this test was 300 ml and the normal procedure is to repon the 

insoluble weight per 100 ml of sample. After dividing by 3. the insolubles were 

-0.00008 g which is a low value. This would indicate a low level of gum and sediment 

even though the filters were found to have gained considerable weight. For the second 

test, the same procedure was used except that the sample was No. 2 diesel fuel and the 

test result was as expected. Instead of gaining weight as occurred during the methyl 

soyate test, both the top and bottom filters lost a small amount of weight. This expected 

result is generally believed to be caused by the isooctane removing a small amount of 

organic binder from the filter medium. It is the primar>' purpose for including the blank. 

The weight change of the top filter was -0.0005 Ig and for the bottom was -0.00023 g. 

The total filterable insoluble was -0.00028 g/300 ml. and the filterable insoluble per 100 

ml of sample was -0.00009 g. These results indicated that while the isooctane washing 

procedure was effective in removing the diesel fuel from the filters, it was not effective in 

removing the biodiesel. 

In the third test. 150 ml of isooctane was used as a sample to determine w hether it 

had any contamination that might have caused the weight increase observed during the 

first test. It was found that both the top and bottom filters lost weight. So the isooctane 

wcis not contaminated. 

In tests 4 and 5. smaller amounts of biodiesel were used to determine whether the 
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biodiesel had some contamination or whether the washing process was not removing 

biodiesel. It was supposed that it" the biodiesel contained gums and sediments that were 

responsible for the increases in weight observed in both filters, then using smaller 

amounts of biodiesel should give smaller weight increases. For test 5. where 5 ml of 

biodiesel was used, the top and bottom filters both gained weight. These weight gains 

were even larger than test 4 where 50 ml of biodiesel was used. So it was clear that the 

weight gain was not caused by contamination in the biodiesel. 

.A.S a final check on whether there might be polvmers produced by fliel oxidation 

already present in the biodiesel an attempt was made to produce a "clean" sample of 

biodiesel. To make a low peroxide and low acid value biodiesel. a mixture of 3 parts 

hexane. and I pan biodiesel was poured through a silica gel column. Before passing 

through the column, the peroxide and acid value for this biodiesel were 40.4 meq. 02/'kg 

and 1.904 mg KOH/g respectively. The mixture was then evaporated under vacuum at 74 

to remove the hexane. Left over was the biodiesel with low peroxide and acid value. 

The peroxide and the acid value for this biodiesel were 2.2 meq. Oi/kg and 0.56 mg 

K.OH/g. The highly polar silica gel should also have removed the gums and sediments. 

This low peroxide biodiesel was then used as a sample. The test results for this sample 

are sho\\Ti as Test No. 6. The results for the test did not improve. Both top and bottom 

filters still gained weight. It appeared that the washing process did not work well. 

To solve the washing problem three approaches were tried. The first approach 

was to increase the number of times the filters were washed with 50 ml of isooctane. The 

second approach was to apply different amounts of suction pressure. And the third 
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approach was to use difTerent washing fluids. In Test no. 7 the number of times the filters 

were washed with isooctane was increased from 3 to 10. The weight change of the filters 

was much smaller, although it was still positive. This confirmed that inadequate filter 

Wcishing was the problem. Washing the filters with this much isooctane was not 

considered to be an acceptable method because it was a significant departure from the 

ASTM procedure and this amount of isooctane may dissolve some of the gums and 

sediments that were being measured. 

The ne.xt approach was to slow down the filtration process by reducing the 

vacuum used to draw the isooctane through the filters during the washing process. It was 

speculated that this might increase the contact between the isooctane and the biodiesel 

and improve the efficiency of its removal. The vacuum was reduced from 12 psi to 0 or 1 

psi which greatly increased the time required for the sample to pass through the filter. 

The results of these tests are shovMi as Tests no. 8. 9. and 10. It was found that the 

efficiency of biodiesel removal could be improved by this technique but the amount of 

biodiesel remaining on the filter was still unacceptable. 

Other solvents were also tried to see if they might be more effective at removing 

the biodiesel. The results of using hexane and toluene are shown as Tests no. 11 and 12. 

respectively. These solvents did not appear to be any more effective than isooctane. 

Other, more polar, solvents might be more effective at removing the biodiesel but thev 

would also tend to remove the gums and sediments the test was trying to measure. 

To investigate whether the higher viscosity of the biodiesel was a problem, a 

biodiesel and isooctane mixture was used as a sample for the test and the result is shown 
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as Test No. 13. The results for this test did not improve either. Finally, to see if the 

technique was sensitive to the products of biodiesel oxidation, a ver>" high acid value and 

viscosity fuel was used as a sample. The acid value for this sample was 32.03 mg KOH'g. 

the peroxide \alue was 20.5 meq. 0:/kg, and the viscosity was 67.43 cS. The test with 

this highly oxidized biodiesel is shown as Test No. 14. The top filter gained 0.10795 g 

and the bottom filter gained 0.12923 g for 50 ml of sample. The bottom filter gained 

more than the top filter, which should not happen if the filters were capturing insoluble 

material. The appearance of these tilters after filtering looked like the gum material had 

collected at the outer edge of both filters as illustrated in Figure 5.7. It appears that all the 

gum material did not collect on the top filter but that some of the gum material passed 

through the top tllter and collected on the bottom filter too. The gum material produced 

by biodiesel may consist of highly viscous material that can still pass through a filter. It 

was likely that all the gum material was not collected by the filters. Some may pass 

through both filters. .At this point it was clear that the .A.STM D2274 method was not 

going to work for biodiesel and fiirther testing was terminated. 

Gum material 

Bottom 

filter 

Figure 5.7 Collected gum and sediment on top and bottom filters 
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5.2 Diesel Engine Performance and Emissions 

In this section, the pertbrmance and emissions of a diesel engine fueled with 

biodiesel are presented. The diesel engine performance results are presented in the first 

section. The second section investigates the effect of timing and fuel oxidation on the 

exhaust emissions. .-Ml raw data collected in the study are included in .A.ppendix E. 

5.2.1 Engine Performance 

This section will discuss the engine power and the fuel consumption while the 

diesel engine was fueled with oxidized and nonoxidized soybean oil methyl esters 

(biodiesel). Three batches of highly oxidized biodiesel were used in this experiment. .A.11 

batches of oxidized biodiesel had a peroxide value of 340 meq. 02/kg. 

In this experiment, three values of injection timing (3'^ advanced, standard, and 3^^ 

retarded) and five fiiel blends were used. These blends were 100% highly oxidized 

biodiesel (100%HPV). 100% unoxidized biodiesel (100%LPV). 20% highly oxidized 

biodiesel blend with No. 2 diesel fuel (20%HPV). 20% unoxidized biodiesel blend with 

No. 2 diesel fuel (20%LPV). and the baseline No. 2 diesel fliel. All data were taken at 

1400 rpm and at two load conditions. The load conditions were full-load (100?^ load) and 

light-load (20% load). The full-load was 190 ft-lbf and the light load was 38 ft-lbf. 

In order to understand the effect of oxidized ftiel and variable timing injection on 

engine performance and emissions, a statistical analysis was performed. This analysis can 

identify- not only the effect of oxidized fuel and injection timing on emissions but also the 

effect of fuel batch, age of batch, the interaction between load and fuel, load and blend. 
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load and timing, timing and fuel, and the interaction among liming, load, and fuel. The 

results of the analysis for one parameter, the brake specific fuel consumption (BSFC). are 

shovvTi in Table 5.2. In the table DF represent the degrees of freedom. SS represents the 

sum of squares and the probability distribution in repeated sampling (referred to as an F 

distribution) is given in the fifth (F Value) column. The significant factors can be 

identified from this analysis of variance (.ANOVA) table. The factors which contain the 

star (*) symbol are the statistically significant factors. The tbllowing factors are 

significant for BSFC; timing (injection timing), fuel. load, and the interaction between 

fuel and load. The other factors, batch, age (batch age), the interactions between timing 

and fiiel. timing and load, and the interaction between timing, fuel, and load did not have 

a statistically significant effect on the BSFC. The weight of the significance level. gi\ en 

Table 5.2 .Analysis of variance (ANOVA) for BSFC 
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in terms of a probability, is called the level of significance (or P-value) of the statistical 

test and is shown in the column with the heading Pr > F. The smaller the value of this 

probability , the hea\ ier the weight of the significance level. For all analyses conducted 

for this project, a 95% confidence interval was used. Since the level of significance for 

the factors, fuel. load, and the interaction between fuel and load are very small, these 

factors are highly significant for BSFC. The timing has a higher level of significance than 

the ftiel. load, and the interaction between fuel and load. The confidence level for the 

timing is 98%. The Tukey's grouping, shown in Table 5.3. shows that variables with the 

same letter in the Tukey grouping column are not significantly different. From this table 

the BSFC for 3" advanced injection timing was significantly different than that at 

standard and 3'' retarded injections. The difference between the standard and the 3"^ 

retarded injection timings was statistically insignificant. The minimum significant 

difference between the two injection timings was 2.755 g/kW-hr of fuel consumption. 

The 3° advanced injection timing had a higher BSFC than the other two injection timings. 

.A.11 fuels tested in this experiment, except for the 20% blends, were significantly 

different. The 100%HPV biodiesel had a higher BSFC then the 100%LPV biodiesel and 

the 100%LPV biodiesel was significantly different than the base fuel (No. 2 diesel). 

Since the torque and the RPM in this experiment were kept constant, the brake 

power was constant throughout the test. Figures 5.8 and 5.9 show the brake specific fuel 

consumption (BSFC) vs. fiiel type and timing for full (100%) and low (20%) load engine 

conditions, respectively. Both figures illustrate that the BSFC for biodiesel was higher 

than for the No. 2 diesel fuel. Sincc the energy per unit mass of biodiesel was lower than 
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Table 5.3 Tukey's Studentized Range (HSD) test for BSFC 
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No. 2 diesel fuel, the fuel consumption increased to maintain the same brake power. The 

energy per unit mass of biodiesel was 37165 kJ/kg while for No 2 diesel fijel the energy 

per unit mass was 42578 kJ/kg. The heating value for the oxidized and non-oxidized 

biodiesel was considered to be the same. Oxidized biodiesel also had a higher BSFC than 

non-oxidized biodiesel. One reason could be when the biodiesel oxidized its energy 

content reduced and the other reason may be the combustion liming. Thompson et al. [74] 

found that the heat of combustion decreased as the peroxide value of the biodiesel 

increased. They found that the heating value decreased about 1.4% over 24 months 
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of storage. In accord with the resuhs of this study, they found that the PV increased over 

this 24 months of storage. At the end of the storage, they found that the PV of the 

biodiesel had reached about 340 meq 0:/kg. 

Figures 5.10 and 5.11 show the thermal efficiency of the engine for full and light 

loads. For the purposes of this calculation, the lower heating value (LHV) for the neat 

oxidized and unoxidized biodiesels were considered to be the same. The LHV for both 

oxidized and unoxidized biodiesels were assumed to be 37165 kJ/kg. while the LHV for 

the N'o. 2 diesel fiiel was assumed to be 42578 kJ/kg. Figures 5.10 and 5.11 show that the 

thermal efficiency of the biodiesel and its blends is the same as for diesel fuel. This 

indicates that the engine converts the same amount of chemical energy to mechanical 

energy for all five fiiel blends. The thermal efficiency for all five fuel blends was about 

37% at the fiill load engine condition, while at the light load engine condition the thermal 

efficiency for all five fuel blends was about 21%. 

A. similar effect was found by Schumacher et al. [75]. In their investigation a 1991 

Dodge pickup was fueled with methyl-ester of soybean oil and diesel fuel. Both fiiels 

showed the same thermal efficiency. Chang et al. [76] fueled a John Deere 4276T four-

cylinder. four-stroke, turbocharged DI diesel engine with biodiesel fiiels and a diesel fuel. 

Chang found that the thermal efficiency of the ester blends was the same as for No. 2 

diesel fuel, which was about 37%. This thermal efficiency matched the results of this 

experiment. 

Figure 5.12 illustrates the BSFC on a percent basis above the baseline diesel fuel. 

The 100%HPV biodiesel at 3" advanced injection timing has a 15.7% increase in BSFC 



www.manaraa.com

• l()0%llPVn (high peroxide value biotliesci) 

0 lOO'Jnl.PVH (low peroxide value biodiesel) 

•  20%llPVn (high peroxide value biodicsel blendl 

02O%I.PV1) (low peroxide value biodiesel blemi) 

•  2D (No. 2 diesel) 

MM 

3 degree advanced standard 3 degree retarded 

InjeLiion liming 

Fi{;urc 5.10 Thermal efficicncy at full-load engine condition 



www.manaraa.com

• 100%HPV[) (high peroxide vahie biodiesei) 

0 100%1.1'VB (low peroxide value biodiesei) 

I32()';'oHPVI) (high peroxide viilue biodiesei blend) 

•  20%1,1'VB (low peroxide value biodiesei blend) 

0 2D(No. 2diesel) 

m 

3 degree advanced standard 3 degree retarded 

Injection l iming 

Figure 5.11 I hcrmal efficiency at light-load engine condition 



www.manaraa.com

Mi 

»!.%: 

Bl()0»'oHPVB 

a looo/ni.pvn 
• 20'!nHPVU 

• 2()''.oi.pvn 

S.-:;S:;X̂  

iiii 

3degree advanced standard 

Injcc(ioi) Timing 

3 degree relarded 

Figure 5.12 Perccnt change in BSFC at full-load engine condition 



www.manaraa.com

93 

compared with No. 2 diesel fuel while the 100%LPV biodiesel has about a 14% increase. 

Thus, there was a 1.5% higher BSFC measured for the 100%HPV biodiesel than for the 

100%LPB biodicsel and this was statistically significant. This also matches well with the 

1.4'?-o decrease in heating value observed by Thompson [74]. The 20% blend of HPV 

biodiesel and LPV biodiesel had a 2% and 1.4% increase in BSFC. respectively. For the 

standard injection timing, the 100°/oHPV and 100%LPV biodiesels had about 15.1% and 

13.8% increases in BSFC. respectively, while the 20% blend of both HPV and LPV 

biodiesels had about 2.2% and 2.3% increases in BSFC. respectively. At the 3° retarded 

injection timing the 100%HPV and 100%LPV biodiesel had about 14.3% and 13.3% 

increases in BSFC while the 20% blends for HPV and LPV had 1.8% and 2.8% increase 

in BSFC. respectively. The 20% blends (20%HPV and 20%LPV) of biodiesel were found 

to be statistically different than the No 2 diesel. while the differences between the 20% 

blends (20%HPV and 20%LPV) were statistically the same. There was a 2.2% increase 

in BSFC found for the 3" advanced injection timing compared to the standard injection 

timing for the 100%HPV biodiesel while only a 0.6% decrease in BSFC was found for 

the 3"^ retarded injection timing. These results are similar to those of MacDonald et al. 

[77] who fueled a Caterpillar 3304 PCNA engine with low-sulfur diesel fuel and methyl-

ester soybean oil. In their research they found about 13 to 14% increase in BSFC for neat 

methyl soyate. 

Figure 5.13 shows the percent change in BSFC relative to the base fuel for 20% 

load. .A.t all timings the 100%HPV and 100%LPV biodiesels have between 14% to 16% 

increase in BSFC while the 20% blends of both HPV and LPV biodiesel have between 
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1% to 3% increases. For this low load engine condition, the advanced injection timing 

gives a 2.1% increase in BSFC compared with the standard injection timing while the 3 ' 

retarded injection timing has almost no effect on BSFC uhich is also confirmed by the 

statistical analysis. From the statistical analysis, it is clear that the difference between the 

BSFC for the 3"^ retarded injection timing and the standard injection liming is 

insignificant. 

5.2.2 The effect of timing and fuel oxidation on diesel engine exhaust emissions 

This section will discuss the diesel engine emissions for the five fuels 

(100%HPVB, 100%LPVB. 20%HPVB. 20%LPVB. and No. 2 diesel) at three injection 

timings. The injection timings were 3° advanced injection, standard injection, and 3^^ 

retarded injection. The engine emissions measured were carbon dioxide (CO2). carbon 

monoxide (CO), unbumed hydrocarbon (HC). oxides of nitrogen fNOxj and the Bosch 

smoke number. .A.11 emissions were expressed on a brake specific (g/kW-hr) basis except 

for the Bosch smoke number. All points shown were the ax erage of three data points and 

the error bars show the spread between the maximum and the minimum points among the 

three data points. 

5.2.2.1 Carbon dioxide (CO2) emissions 

The analysis of variance (.\NOVA) table for CO: emissions is shown in Table 

5.4. The significant factors are shown by the symbol of star (*). Tukey's grouping is 

given in .\ppendix D. The emissions of CO2 are direct products of the complete 
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Table 5.4 Analysis of variance (ANOVA) for BSCOi 

combustion of the fuel so the BSCO; emissions are closely related to the BSFC. 

Generally, the higher the BSFC the higher the BSCO: emissions will be. 

The brake specific carbon dio.xide (BSCO2) emissions for the five blends at three 

different timings are illustrated in Figure 5.14. The changes of the CO2 emissions for the 

five different blends were ver\' small as indicated by the narrow range ot values gi\ en on 

the y-axis. The 100%HPV biodiesel shows the largest increase in CO; emissions tor all 

three injection timings. It was seen from the previous section that the BSFC for 

100%HPV biodiesel at all injection timings was significantly higher than all four of the 

other fiiel blends. The increase of CO; emissions for 100%HPV biodiesel at all injection 

timings was logical because of the higher amount of fuel that was burned. Compared to 

the baseline fuel (No. 2 diesel) for 3" advanced injection, the 100%HPV biodiesel had 

about 2% higher CO; emissions while the 100%LPV biodiesel had only about 0.5% 
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higher. At this injection timing the lOOPoHPV biodiesel had only about 1.5% higher CO: 

emissions than the 100%LPV biodiesel. The BSFC for the 100%HPV biodiesel at 3" 

advanced injection timing was also about 1.5% higher than the IOO%LPV biodiesel. The 

larger amount of tliel produced higher CO; emissions. This explains why the CO; 

emissions were higher at this injection timing. At the standard and the 3'' retarded 

injection timing, the 100%HPV biodiesel had about 1.2% and 0.9% higher CO; 

emissions compared to the 100%LPV biodiesel. .At these injection timings the 100%HPV 

biodiesel also had a higher BSFC than the 100%LPV biodiesel and the base fuel. This 

higher BSFC justifies the higher CO; emissions. The 20% blends (20%HPV and 

20%LPV) of biodiesel had less CO; emissions than the No. 2 diesel fuel for all injection 

timings, but the decrease was not statistically significant. 

Relative to the standard injection timing the CO; emissions for all the fuel blends 

were higher for the 3" advanced injection timing, h was also seen in the statistical 

analysis that the effect of the 3° advanced injection timing on CO; emissions was 

statistically different than the standard and 3° retarded injection timings. The increase of 

CO; emissions for the 3" advanced injection timing compared to the standard injection 

timing was between 1.5% to 2.1% for all the fuel blends. This increase of CO; was due 

to the increase of fuel consumption. 

At the light load engine condition, the BSCO; emissions were higher than for the 

full-load engine condition due to the higher BSFC at this engine condition. Figure 5.15 

shows the BSCO; emissions for the three injection timing settings. In this figure the 

100%HPV biodiesel shows the highest CO; emissions for all injection timings. The next 
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largest is the 100%LPV biodiesel. The CO: emissions for the 100%HPV biodiesel at 3° 

advanced, standard, and 3'' retarded injection timings were increased by 2.22%. 1.97%. 

and 1.89%. respectively, relative to the base fuel, while the 100%LPV biodiesel increased 

by only 0.1%. 1.42% and 1.44%. respectively. Compared to IOO%LPV biodiesel. the 

100%HPV biodiesel had about 2.1 % higher CO2 emissions at 3'' advanced injection 

timing. TTiis increase of CO; emissions was related to the higher BSFC at this injection 

timing. 

From the above discussion it can be stated that the CO2 emissions track the BSFC 

very well and the oxidized biodiesel has higher CO2 emissions than the non-oxidized 

biodiesel due to its higher fuel requirement. 

5.2.2.2 Carbon monoxide (CO) emissions 

The statistical analysis for CO emissions is shown in Table 5.5. From this 

ANOVA table it can be seen that the changes in CO emissions that resulted from the 

changes in injection timing, fliel. and load were statistically significant. From the Tukey's 

grouping (in Appendi.x D) it can be seen that the CO emission changes resulting firom the 

3" advanced timing are significantly different than the 3" retarded timing. But the 

difference between the CO emissions for the S'' advanced and standard timings are 

insignificant. SimilarK. the difference between the standard and 3*^ retarded injection 

timings is not statistically significant either. It is important to note that the CO emissions 

for all five fuel blends are significantly different. These statistical statements will be 

supported by the numerical data for CO emissions as part of the discussion in this section. 
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Table 5.5 Analysis of variance (ANOV'A) for BSCO 

Carbon monoxide is an intermediate product of hydrocarbon combustion. As the 

hydrocarbon fuel bums, it produces CO most of which oxidizes to CO2. The brake 

specific CO emissions are shown in Figure 5.16. At the full load engine condition, the 

emissions of CO for the four biodiesel blends were less than for the base fuel (No. 2 

diesel). It is important to note that the oxidized biodiesel had about 15% less CO 

emissions than the unoxidized biodiesel at the standard injection timing. The difference 

in CO emissions for the oxidized and non-oxidized biodiesel was statistically significant. 

This significant CO emissions reduction caused by oxidized biodiesel will be discussed in 

a later section. It can be seen from the Tukey's grouping table that differences between 

all the fuel blends were statistically different. The highest CO emissions for all of the 

injection timings were found for the baseline fuel, while the highly oxidized biodiesel 

(100%HPV) fuel had the lowest. 
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Compared to the beise fuel (No. 2 diesel). the CO emissions for highly oxidized 

{100%HPV) biodiesel were reduced over 24% for all injection timings. Relative to the 

base ftiel. the 3" advanced, standard, and 3" retarded injection timings reduced CO 

emissions by 24.1%. 28.6%. and 25.3%. respectively. The unoxidized (100%LPV) 

biodiesel for the 3" advanced, standard, and 3° retarded injection timings reduced CO 

emissions by only 21.1%. 15.7%. and 13.3%. respectively. The CO emissions for the 

20% blends of HPV and LPV biodiesel at the 3*^ advanced injection timing were reduced 

by 21.8% and 20.57% which were close to the 100% LPV biodiesel. Also, the 20%HPV 

biodiesel at the standard injection timing had 16.1% CO emissions reduction while the 3^^ 

retarded injection timing had only a 1.7% reduction. The 20% blend of LPV biodiesel at 

standard injection timing had a 5.5% reduction in CO and at 3° retarded injection timing 

had a 4.8% CO emissions reduction. It was found that the high peroxide (100%HPV) 

biodiesel had lower CO emissions than the low peroxide value (100%LPV) biodiesel. 

This reduction depends upon the injection timings that will be discussed in the later 

section. At the standard and 3^^ retarded injection timings the reduction of CO emissions 

were 15.3% and 13.8%. respectively. Chang et al. [76] also found diat biodiesel blends 

lowered CO emissions. In their research, they found that a fiiel consisting of 40% methyl 

palmitate. 10% methyl stearate. and 50% diesel fiiel reduced CO emissions by 24%. 

The advanced injection timing had much higher CO emissions for all fuel blends 

while the retarded injection timing had lower CO emissions than the standard injection 

timing. It was found that at 3" advanced injection timing for highly oxidized (100%HPV) 

biodiesel. the CO emissions increased by about 88.5% compared to the standard injection 
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timing while at 3" retarded injection timing the CO emissions were reduced by only 

5.9%. Unoxidized (100°oLPV) biodiesel and the 20% blend of HPV biodiesel at 3" 

advanced injection timing had close to 66% higher CO emissions than the standard 

injection timing. For the base fuel. 3"^ advanced injection timing increased the CO 

emissions by 77.2%. while the 3'' retarded injection liming reduced the CO emissions by 

10% compared to the standard injection. Compared to the 3" advanced injection timing. 

3'' retarded injection timing had about a 50% reduction in CO emissions. 

The light-load (20% load) CO emissions are shown in Figure 5.17. The brake 

specific CO emissions were higher for the light-load condition than at full load. Similar 

to the ftill load condition, the light load condition had lower CO emissions for the highly 

o.xidized biodiesel (IGOP-oHPV) than for the base fuel at all injection timings. 

It can be seen in the figure that the CO emissions increased as the injection timing 

advanced and this was true for all five tested fiiels. The highest CO emissions 

improvement was found for the oxidized biodiesel (100%HPV) which was between 49% 

to 56% less than diesel fuel regardless of injection timing. The unoxidized (100%LPV) 

biodiesel had within 39%-42% reduction for the 3'' advanced and standard injection 

timings while the 3" retarded injection timing had about a 33.2% reduction. The 20% 

blends of HPV and LPV biodiesel also had significantly reduced CO emissions. This CO 

reduction was between 19% and 32% for the three injection timings. 

At the light load engine condition, the difference in the CO emissions for 3"' 

advanced injection timing compared to the standard injection timing was not statistically 

significant, but it was found that the 3" advanced injection timing had higher CO 
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emissions then the 3° retarded injection timing which was found to be statistically 

significant. 

From the above discussions it can be concluded that all neat biodiesels and 

biodiesel blends produced lower CO emissions for all injection timings. Regardless of 

injection timing and load, the neat oxidized biodiesel reduced the CO emissions between 

24% and 55% compared with diesel fuel. The oxidized biodiesel also produced less CO 

emissions than the unoxidized biodiesel. It reduced CO emissions in the range of 3.8% to 

26.2% regardless of injection timing and load. The advanced injection timing produced 

higher CO emissions than the retarded injection timing. At the full load engine condition 

for the 3" advanced injection timing, the reduction in CO emissions was in the range of 

48.9'?'o to 88.4% for any blends compared to standard injection timing. The CO emissions 

were higher at the light load engine condition than at the full load engine condition. 

Compared to neat non-oxidized biodiesel. the neat oxidized biodiesel at this light load 

engine condition produced 16.1% to 24.6% less CO emissions. 

5.2.23 Unburned hydrocarbon (HC) emissions 

The changes in HC emissions that resulted from the change in injection timing, 

fuel, and load were statistically significant. The significance levels for these parameters 

are shown in Table 5.6. The Tukey's grouping table shown in Appendix D. also identifies 

the effect of changes in injection timing on the HC emissions. Further, the effect of 

oxidized biodiesel on the HC emissions can be identified from this table. With the help of 

the .ANOVA table and the Tukey's grouping table, the effect of injection timing and 
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Table 5.6 Analysis of variance (ANOVA) for BSHC 
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oxidized biodiesel blends will be discussed in this section. In the same manner as the CO 

emissions, the HC emissions are affected by the injection timing, and the oxidized 

biodiesel was tbund to significantly reduce HC emissions compared v\ith unoxidized 

biodiesel. 

The HC emissions for all five fuel blends are shown in Figure 5.18 for the three 

injection timings. At the full load condition, the HC emissions for all the biodiesel fiiels 

were less them for the base fuel (No. 2 diesel). It is important to note that like the CO 

emissions, the oxidized biodiesel (100%HPV) had less HC emissions than the unoxidized 

biodiesel (100%LPV). This decrease in HC emissions was also proven statistically 

significant as shown in the Tukey's grouping table in .Appendix D. The highest HC 

emissions for all the injection timings were found for the baseline fuel, while the highly 

oxidized neat biodiesel (100%HPV) fuel had the lowest. Both 100%HPV and 100%LPV 
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biodiesel fuels showed a reduction in HC emissions compared to the base fuel, but the 

reduction for the lOO°/'oHPV biodiesel was significantly higher than for the 100°/oLPV 

biodiesel. 

Compared to the base fuel, the HC emissions for the highly oxidized {100%HPV) 

biodiesel were reduced by between 36% and 60% regardless of injection timing. Relative 

to the base fuel, the S"* retarded injection timing had the highest reduction in HC 

emissions which was 60.1%. Unoxidized (100%LPV) biodiesel reduced the HC 

emissions by 53.2%. So it is clear that the oxidized biodiesel reduced HC emissions. This 

reduction in HC emissions for oxidized biodiesel was also found to be statistically 

significant. For the 3" retarded injection timing the 100%HPV biodiesel reduced the HC 

emissions by 14.8% compared to the 100%LPV biodiesel. At the standard injection 

timing, the oxidized biodiesel (100%HPV) reduced the HC emissions by 15.7% 

compared to the unoxidized biodiesel (100%LPV). 

The 20% blends (20%HPV and 20°'bLPV) also reduced HC emissions compared 

to the base fiael (No. 2 diesel ). The reduction of HC emissions for the 20%HPV biodiesel 

was higher than for the 20°bLPV biodiesel. Compared to the 20%LPV biodiesel. the 

20%HPV biodiesel had about 6% less HC emissions at the standard injection timing. This 

HC emissions reduction was also found for the blends of vegetable oil ester and diesel 

fiiel tested by Chang et al. [76]. Rickeard et al. [78] also mentioned HC emissions 

reductions for the bio-fuels. 

The brake specific HC emissions for the light-load engine condition are shown in 

Figure 5.19. The HC emissions were higher at the light-load engine condition than at the 
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fiiii load engine condition by approximately a factor of 10. At the light load engine 

condition, the oxidized biodiesel (100%HPV) significantly reduced the HC emissions 

compared to the unoxidized biodiesel (100%LPV). This reduction in HC emissions was 

between 20°'o and 28.5% regardless of the injection timing. It was found from the figure 

that the HC emissions were increased as the injection timing advanced and this was true 

for all five tested fuel blends. Compared to the base fuel, the highest HC emissions 

improvement was found for the oxidized biodiesel {100%HPV) which was between 46% 

and 65% regardless of the injection timing. The next largest improvement in the HC 

emissions was for the unoxidized (100%LPV) biodiesel. This blend had between 32% 

and 52% reductions in HC emissions for all injection timings. The 20% blends (20%HPV 

and 20%LPV) also reduced the HC emissions, however, the 209'oHPV biodiesel reduced 

HC emissions more than the 20%LPV biodiesel. 

The injection timing also has an effect on the HC emissions. The advanced 

injection timing had higher HC emissions than the retarded injection timing. This change 

in HC emissions resulted from the change in injection timing and was statistically 

significant. It had been found that at the 3° advanced injection timing, the oxidized 

biodiesel (100%HPV) increased HC emissions by about 38.5% compared to the standard 

injection timing while at the 3^^ retarded injection timing the HC emissions were reduced 

by 8.8% compared to the standard injection timing. Compared to the 3" advanced 

injection timing, the 3° retarded injection timing had about 34% less HC emissions for 

the oxidized biodiesel. .A,t the light-load engine condition, the advanced injection liming 
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also increased the HC emissions while the retarded injection timing significantly reduced 

HC emissions. 

5.2.2.4 Oxides of Nitrogen (NO^) emissions 

Nitric oxide (NO) and nitrogen dioxide (NO:) are usually combined together as 

NOx emissions. The nitric oxide (NO) is the dominant part of the oxides of nitrogen 

produced inside tlie engine cylinder. The o.xidation of molecular nitrogen is the principle 

source of NO emissions. At the full load engine condition, the brake specific NOx 

emissions are shoun in Figure 5.20. The NO^ emissions for biodiesel were higher than 

for tlie base ftiel. The reason is that the biodiesel fuel contains significant oxygen. The 

fuel oxygen causes the areas of the cylinder that would ordinarily be rich to be leaner. 

This fuel oxygen may provide the additional oxygen needed to oxidize the nitrogen. The 

N'Ox emissions for the oxidized biodiesel were not significantly different than unoxidized 

biodiesel. 

The fuel blends have significant effect on NO^ emissions as shown in Table 5.7. 

The Tukey's grouping table in Appendix D compares the effect of fuel blends on the NOx 

emissions. The NOx emissions of the 20% blends were not significantly different than the 

base ftiel (No. 2 diesel). 

The neat oxidized biodiesel (100%HPV) at the standard injection liming had 

about 13% higher NOx emissions than the No. 2 diesel fuel while the 100%LPV biodiesel 

had about 13.6% higher. The 20% blends (20%HPV and 20%LPV) had slightly higher 

NOx emissions compared to the No. 2 diesel fuel although, as noted earlier, the difference 
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was not statistically significant. The 3" advanced and 3" retarded injection timings 

increased NO^ emissions by 11% and 18°'b. respectively. L'noxidized. neat biodiesel 

(100%LPV') at the 3" advanced and 3" retarded injection timings had increased NO^ 

emissions by 7.5% and 12.9<;o. respectively. 

Table 5.7 Analysis of variance (.A.NOV.\) for BSNOx 
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The light-load (20% load) NOx emissions are shown in Figure 5.21. The BSNOn 

emissions were lower at the light-load condition than at full load. Similar to the full-load 

engine condition, at the light load engine condition the o.xidized biodiesel (100%HPV) 

had no significant effect on the NOx emissions compared to the unoxidized biodiesel 

(100%LPV). At the 3"^ advanced injection timing, the high and low oxidized biodiesel 

(100%) both had about 5.7% increase in NOx emissions compared to the base fiiel. .A.11 of 
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the fuels increased the NOx emissions at the 3° advanced injection liming but the standard 

and 3" retarded injection timing showed inconsistent results. 

At both the full and light load engine conditions the injection timing had a 

significant effect on the NO^ emissions. The Tukey's grouping table in Appendix D also 

supports this statement. The NO^ emissions increased as the injection was advanced. For 

the full load engine condition, it was found that at the 3" advanced injection timing for 

the oxidized (100%HPV) biodiesel. the NOx emissions increased by about 21.9*?o 

compared to the standard injection timing, while at the 3'' retarded injection timing the 

NOx emissions were reduced by 20.9%. Compared to the standard injection timing, the 3" 

advanced injection timing for unoxidized (100%LPV) biodiesel had 17.4% higher NO^ 

emissions, while the 3'^ retarded injection timing had a 24.6% reduction in NOx 

emissions. The 20% blend of HPV biodiesel at the 3^^ advanced injection timing had 

28.9% higher NOx emissions than the standard injection liming while the 3^' retarded 

injection timing reduced NOx emissions by 25.9%. For the base fuel, the 3^" advanced 

injection timing increased NOx emissions by 24% while the 3^ retarded liming reduced 

NOx by 24.2% compared to the standard injection timing. 

.^t the light load engine condition, the NOx emissions increased at the advanced 

injection timing while at the retarded injection timing the NOx emissions were reduced. A 

linear relation was found between NOx emissions and injection timing. Feldman et al. 

[79] fueled a Yanmar 3TN75E-S. 3-cylinder. normally aspirated, direct injection diesel 

engine with vegetable oil ester and a No. 2 diesel fuel. They found that retarded injection 

reduces the NOx and the particulate emissions. Mittelbach and Tritthart [80] tested 
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methyl esters of used fr> ing oil and found lower CO and HC emissions and smoke level 

but increased NG^ emissions compared to N'o. 2 diesel fuel. Rickeard et al. [78] also 

mentioned that the NOx emissions increased for the bio-fuels. These results support the 

findings of this project. 

From the above discussion it can be concluded that the neat biodiesels produced 

slightly higher NG^ emissions than the base fuel (No. 2 diesel) at all three injection 

timings. Statistically, the difference between the neat o.xidized biodiesel and the neat non-

oxidized biodiesel did not produce significant differences in NO„ emissions. A linear 

relation was found between the injection timing and the NG^ emissions. The 3° retarded 

injection timing gave at least 20.9% reduction in NOx emissions compared with the 

standard injection timing. The light-load engine condition had more reduction in NG^ 

emissions than the full load engine condition. 

5.2.2.5 Smoke Number (SN) 

The statistical analysis given in Table 5.8 and .Appendix D showed that the 

change in smoke number that resulted from the change in the fuel blend, injection timing, 

and load, were statistically significant. The smoke number at 3" retarded injection liming 

was significantly different from that of standard injection timing while the difference 

between standard and 3° advanced injection timings was not statistically significant. Even 

though the smoke number for the highly oxidized biodiesel (100%HPV) was lower than 

for the imoxidized biodiesel at full load, the difference was not statistically significant. 

Similarly, the smoke number for the 20% blends of HPV and LPV biodiesels were not 
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significantly different from each other. The smoke number for the base fuel had a 

statistically significant difference compared with the other four fuels. .A.ll three groups, 

the neat biodiesels (100%HPV. 100%LPV). the 20% blends (20%HPV. 20%LPV). and 

the base fuel were significantly ditTerent. The minimum significant difference in the 

smoke number was 0.05 for the fuel blends. At the fiill load condition, the smoke number 

for all tlie biodiesel ftiels was significantly lower than for the base fuel (No. 2 diesel). The 

lowest smoke number was found for the oxidized biodiesel (100%HPV). Compared to 

the base fuel, the unoxidized biodiesel (100%LPV) had a 56.9% reduction in smoke 

number at the standard injection timing. However, the oxidized biodiesel (100%HPV) 

had even more reduction in smoke number. At the standard injection timing, it was found 

Table 5.8 Analysis of variance (ANOVA) for Smoke Number 
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that the oxidized biodiesel (lOC/bHPV) had a 14% lower smoke number than the 

unoxidized biodiesel. 

The smoke numbers for all five fuels are shown in Figure 5.22 for the three 

injection timings. The highest smoke number at all injection timings was found for the 

baseline fuel, while the highly oxidized biodiesel (100%HPV) fuel had the lowest. All 

fuel blends showed an increase in smoke number as the injection timing was retarded. 

Compared to the base fuel, the smoke number for the highly oxidized 

(100%HPV) biodiesel was reduced by 59.4% at the 3" advanced injection timing and by 

62.9% at the standard injection timing. Relative to the base fuel, the 3" retarded injection 

timing reduced the smoke number by 46.3%. Compared to the base fiael (No. 2 diesel). 

the unoxidized (100%LPV) biodiesel reduced the smoke number by 58.3% at the 3" 

advanced injection timing and by 56.9% at standard injection timing. This unoxidized 

biodiesel at 3" retarded injection liming reduced the smoke number by 35.4% compared 

to the base fuel. The smoke number reduction for the 20% blends of HPV and LPV 

biodiesel was berv\een 8% and 22% at all injection timings. Schumacher et al. [75] found 

a large reduction in smoke number when using biodiesel. In their research, a Dodge 

pickup was fueled with methyl ester of soybean oil. The reduction was about Se^/o for 

100% methyl ester of soybean oil. 

As stated earlier, the advanced injection timing reduced the smoke number. 

Compared to the standard injection timing, the 3" advanced injection timing reduced the 

smoke number between 17% and 29% regardless of the fuel. However, the opposite 

result was found for the 3" retarded injection timing. At this injection timing, the smoke 



www.manaraa.com

2.5 

E 3 
z 

o 
E OJ j= 
o VI O 
m 

1.5 

0.5 

•  lOOHblll'Vn (high pcro.\iile vahic biodiisci) 

E3 l()0"'ol.l'VB (low pct().\idc viiliic biodie.sci) 

•  2(l"oUPVH (high pem.vide value biodic.scl blend) 

03()"nl.PVU (liiw pero.vide value biodiesci blend) 

021) (No 2diesel) 

f At; 

IJ 
o 

3 degree advanced standard 

InjeLtloii l iming 

3 degree retarded 

Fi{>urc 5.22 Bosch smoke numhcr at fuil-hiad 



www.manaraa.com

121 

number increased over 100% for both neat biodiesel fuels (100%HPV. 100%LPV) while 

the 20% blends (20%HPV. 20%LPV) showed increases of about 55% compared with the 

standard timing. For the base fiiel. the 3" advanced injection timing reduced the smoke 

number by 24.6% while the 3" retarded injection timing increased the smoke number by 

41.1% compared to the standard injection timing. Feldman et al. [79] investigated fuel 

injector timing and pressure optimization on a DI diesel engine for operation on 

biodiesel. In their research it was also found that the smoke number reduced at advanced 

injection. 

The light-load (20% load) smoke numbers are shown in Figure 5.23. Since the 

smoke numbers were so small for this load the error bands are large. .Anv- attempts to 

draw conclusions were not considered to be worthwhile. 

5.2.2.6 Summary of emissions results 

Figures 5.24 through 5.26 show the percent change in emissions compared to the 

base diesel fuel for the 3^^ advanced, standard, and 3" retarded injection timings at the 

full-load engine condition. This is the same data presented earlier but in a summarized 

form. .A.11 of the emissions are shown on the y-axis. and the percent change in emissions 

relative to the base fuel is shown on the .x-axis. .A. reduction in the CO and HC emissions, 

and the smoke number were observed for all fiiel blends (100%HPV. 100%LPV. 

20%HPV. and 20%LPV) at all injection timings. The maximum reduction in these 

emissions was found for the oxidized biodiesel. However, an increase in the NOx 

emissions was found for all fuel blends at all injection timings. Regardless of the 
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Figure 5.26 Percent change in emissions for 3° retarded injection timing at full-load 
engine condition 

injection timings and the fuel blends, the smoke number, the CO emissions and HC 

emissions were reduced in the range of 8% to 63%. 2% to 29%. and 3% to 60%. 

respectiveh. while the NOx emissions were increased in the range of 0.5% to 18%. 

Regardless of the injection timing, the oxidized neat biodiesel reduced the CO and HC 

emissions in the range of 4% to 15% and 9% to 16%. respectively, compared to 

unoxidized neat biodiesel. The emissions of CO2 showed mixed results. 

Figures 5.27 and 5.28 show the percent change in emissions at the full load engine 

condition for the 3° advanced and 3° retarded injection timings compared with standard 

timing. A reduction in CO emissions was observed for the 3" retarded injection timing. 

Compared to the 3*^ advanced injection timing, the standard injection liming reduced CO 

and HC emissions in the range of 33% to 47% and 4% to 28%. respectively, regardless ot 
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fuels. The effect of fuel injection timing on the NOx emissions is significant. A reduction 

on NOx emissions in the range of 21% to 26% was observed for the 3" retarded injection 

timing while an increase in NOx emissions in the range of 17% to 29% was observed for 

the 3" advanced injection timing. Smoke number behaved in an opposite manner to the 

NOx emissions. At the 3"^ retarded injection timing, the smoke number were increased in 

the range of 41° o to 112% while at the 3" ad\ anced injection timing the smoke number 

were reduced in the range of 17° o to 30% for the five fuels tested. 

Figures 5.29. 5.30. and 5.31 show the percent change in emissions at the light-

load engine condition for 3" ad\anced. standard, and 3" retarded injection timings, 

respectively. In these figures all emissions comparisons were made relative to the base 

fuel (No. 2 diesel). .A. reduction in CO and HC emissions were observed regardless of 

injection timing and fuel. These CO and HC reductions were in the range of 10% to 56% 

and 6% to 66%. respectively. The o.xidized neat biodiesel reduced the CO and HC 

emissions more than uno.xidized biodiesel in the range of 16% to 25% and 20% to 29%. 

respectively, over the range of injection timing studied. .An increase in NOx emissions 

was found for the 3" advanced injection timing for all fuel blends. However, a reduction 

in NOx emissions was found for the 3° retarded injection timing for all fiiel blends. 

Figures 5.32 and 5.33 show the percent change in emissions for the 3^^* advanced 

and 3" retarded injection timings relative to the standard injection timing. It can be 

concluded that all of the emissions increase at the 3" advanced injection timing while all 

the emissions except CO: decrease at the 3" retarded injection timing. At the 3"^ ad\ anced 

injection timing, the CO. HC. and NOv emissions for all five fuels were increased in the 
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engine condition 
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Figure 533 Percent change in emission for 3° retarded injection timing (light-load) 

range of 6% to 21%. 7% to 35%. and 19% to 36% respectively. However, at the 3^^ 

retarded injection timing, the CO. HC. and NO^ emissions for the five fuels were 

decreased in the range of 4% to 15%. 3% to 26%. and 26% to 33% respectively. .-Ml of 

this data was discussed in detail in the previous sections. 

5.3 Combustion Characteristics 

In this section, a comparison of the injection pressure data for the different liuels 

and operating conditions will be presented first. Then, a comparison of the combustion 

characteristics will be presented in the second section. Finally, the effect of injection 

timing and fuel oxidation on the ignition delay will be presented. 

•xa-;-: 
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5.3.1 Comparison of the start of fuel injection 

Three different fiiel injection pump settings were used for this study. They have 

been designated 3*^ retarded, standard, 3" advanced. The actual start of fuel injection will 

obviously be affected by this pump setting but it can also be influenced by changes in 

fuel properties such as the bulk modulus and speed of sound. The results of the statistical 

analysis for the start of fuel injection are shown in Table 5.9. It can be stated from this 

table that the change in the start of fuel injection that resulted from the change in the 

parameters, fuel batch, age of fuel, injection timing, fuel blends, load, and the interaction 

between fuel and load, timing and fuel, timing and load were all statistically significant. 

From the Tukey's grouping table shown in Appendi.x D. it can be stated that the effect of 

the different oxidized ftiel batches on the start of fuel injection was statistically 

Table 5.9 Analysis of variance (ANOVA) for start of fuel injection 
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significant. Three batches of fuel were oxidized for the entire test. Each batch of oxidized 

fiiel lasted for three days of testing. The first, second and the third tests were day 1. day 2. 

and day3. respectively. The day 1. day 2. and day 3 oxidized biodiesels were about 24 

hours. 72 hours, and 120 hours old. respectively, which were considered the ages of the 

oxidized biodiesel. The peroxide value (PV) of biodiesel changes with time and this is 

probably the reason the effect of the fuel age (24 hours. 72 hours, and 120 hours) on the 

start of fiiel injection was statistically significant. .411 three injection timings' effect on 

the start of fuel injection were significantly different as would be expected. However, the 

differences between the fuels for the start of fuel injection were not all statistically 

significant. N'eat biodiesePs effect on the start of fuel injection was significantly different 

than the other three fuels (the 20% blends and No. 2 diesel). but the difference between 

the neat biodiesels (IOO%HPV and 100%LPV) themselves were not significantly 

different. Similarly, the effect of the 20% blends (20%HPV. 20%LPV) and the No. 2 

diesel fuel on the start of fuel injection were not significantly different from each other. 

The start of fuel injection is important because the fuel injected early will have more time 

to bum completely while the fijel injected late vvill have less time. The effect of changes 

in ftiel injection timing on the start of combustion will be confounded by the effects of 

the different fliel cetane numbers. The cetane number has an effect on the time delay 

between when the fuel is injected and when it starts to bum. The higher the cetane 

number, the better the ignition quality of the fuel, and the faster the ftiel will start to bum. 

The injection line pressure at standard timing and the fiill load engine condition 

for all five tested fuels is shown in Figure 5.34. The start of fiiel injection tor 
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100%HPVB. 100%LPVB. 20%HPV. 20%LPVB. and No. 2 diesel fuel were 17.4^ 17.3". 

15.4'', 15.6". and 15.r' BTDC. respectively. The definition of the start of injection used in 

this study was the time when the injection line pressure had reached 207 bar. injector 

nozzle tester tested three similar tliel injectors and the needle opening pressure for all the 

injectors was about 207 bar. This pressure was considered the start of fuel injection. The 

injector will open at a lower pressure than the peak injection pressure. The pressure in the 

injection line had the large amplitude pressure waves. These pressure waves may not be 

the characteristic of the actual injection pressure. 

The 100%HPV and 100%LPV biodiesel fliel both injected about 2.3° earlier than 

the base fuel rNo.2 diesel) and the blends (20%HPVB and 20%LPVB). .A.11 three blends 

(20%HPV. 20%LPV. and No. 2 diesel) had almost the same start of fuel injection. The 

peak injection line pressure for the 100% biodiesels was about 310 bars while the 20% 

blends and the base fuel had slightly lower peak injection pressures. 

Figure 5.35 shows the injection line pressures at the light-load engine condition 

for all five tested fuels. In this case the 100% biodiesels still show a more advanced 

injection timing than the No. 2 diesel and the 20% blends. The 100%HPV biodiesel 

injected about 2.0'^ before the base fijel while the 100%LPV biodiesel injected about 1.2° 

before the base fuel. The 20% blends and the base fuel show almost the same injection 

timing. The peak injection pressures for the fuels were all about 293 bars. 

Figures 5.36 and 5.37 show the start of fuel injection into the cylinder for all three 

injection timings (3° advanced, standard, and 3° retarded) at the full and light load engine 

conditions. Each bar on these figures is the average of three days of data. The error bands 
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show the extent of maximum and minimum value of the three. The injection timings were 

set ever\ day and were confirmed using the data acquisition system. In the injection line 

pressure for some days, there were some unexplained anomalies. For example, at the full 

load engine condition on day 2 (3'^ advanced injection timing) the start of ftiel injection 

for N'o. 2 diesel fiiel was about 2"^ more advanced than the blends while it should be close 

or somewhat retarded from the blends. 

5.3.2 Comparison of the start of combustion times and fuel burning rates 

Table 5.10 shows the statistical results of the analysis of variance for the start of 

combustion. The defmition of the start of combustion used in this study was the time 

when the slope of the heat release rate determined from the cylinder pressure data started 

Table 5.10 Analysis of variance (ANOV.A.) for start of combustion 
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to rise rapidh. The significant factors that alTect the start of combustion are fuel batch, 

age. injection timing, load. fuel, the interaction between ftiel and load, and the interaction 

between timing smd fuel. From the Tukey table in Appendix D. fuel batch one is 

significantly ditTerent from fuel batch tv^o. but batch one and batch three, and batch two 

and batch three are not significantly ditTerent from each other. Like batch, age level 1 and 

age level 2 are significantly different. The time elapsed after oxidizing the biodiesel was 

defined as the age of the fuel. .\ge level 1 is one day old oxidized biodiesel and age lev el 

2 is 3 da\- old oxidized biodiesel. The effect of all injection timings on the start of 

combustion was significantly different. Also, all fuels except for the base fuel and the 

20%LPV biodiesel were shovsTi to have starts of combustion that were statistically 

different. 

Figures 5.38 and 5.39 show the heat release profiles for N'o. 2 diesel and 

100%HPV' biodiesel. respectiveh. for the three different injection timings. .As the 

injection timing was retarded, a decreasing amount of the combustion takes place during 

the premixed portion of the combustion, and there is a corresponding increase in the 

diffusion phase. The premixed portion of the heat release curv e is the spike that occurs 

shortly after ignition. This phenomenon was true for both No. 2 diesel fuel and the 

100%HPV biodiesel. However, the peak premixed fuel burning rate for the No. 2 diesel 

fuel was higher than for the 100%HPV biodiesel. The No. 2 diesel fuel has a lovver cetane 

number than the oxidized biodiesel [24], For low cetane fuels with longer ignition delays, 

a larger fraction of the fuel is injected before ignition occurs, which results in \ er\' rapid 

burning rates once combustion starts. These rapid burning rates give high rates ot 
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pressure rise and high peak pressure. An almost identical result was tbund by All [83] 

and Scholl et al. [1]. 

Figure 5.40 shows the heat release profiles at standard timing for all five fuels. 

The 100%HPV biodiesel showed the most advanced start of combustion of the 5 fuels. 

The next most advanced start of combustion was found for the 100%LPV biodiesel. The 

20% blends and No. 2 diesel fuel show almost no difference in the start of combustion. 

Compared to the base fuel, the oxidized 100%HPB biodiesel had about 3.3^^ earlier start 

of combustion at the standard timing, while 100%LPV biodiesel had only 2.3" earlier 

start of combustion. 

Figures 5.41 and 5.42 show the start of combustion at three different timings for 

the full and light load engine conditions. The start of combustion advanced for the 

100%HPV biodiesel compared to No. 2 diesel fiiel. The 100%LPV biodiesel also 

advanced the start of combustion but the other fuels (the 20% blends and No. 2 diesel) 

showed mixed results at the full load engine condition. Al the light-load engine 

condition, the start of combustion occurred later than at the fiill-load engine condition. 

The 100%HPV biodiesel at this load showed the most advanced start of combustion 

while the No. 2 diesel fuel showed the most retarded. 

5.3.3 The effect of timing and fuel oxidation on ignition delay 

The analysis of variance (ANOVA) table for ignition delay is shown in Table 

5.11. The significant factors that affect the ignition delay are injection timing, fiiel. load, 

the interaction between fuel and load, and timing and load. .A.11 injection timings have a 
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significant effect on ignition delay. Also, all fuels have ignition delays that are 

significantly ditTerent from each other. 

The ignition delay is the time between the start of injection and the start of 

combustion. The fuel injection data were taken immediately after the cylinder pressure 

data and were the average of fifty cycles. Both injection and cylinder pressures were 

taken everv" quarter of a degree of crank-shaft rotation and then the injection pressures 

were plotted to identify the injection timing. The start of combustion was identified from 

the change in slope of the heat-release rate, determined from cylinder pressure data using 

the techniques described in the previous chapter. The ignition delay is the time interval 

between the start of injection and the start of combustion. 

Table 5.11 Analysis of variance (ANOVA) for ignition delay 

Sour ce 25" Z Mtrsr. « Value ?r • 

Mcde 

^ - 2392 

1^66 

r.64 4? 

i- C Z  ̂  w  ̂C - 1 1 2  c .  ~ ^  

WHOl .n 

•4 5c 

14 61 

t.1" 14 2.41 : . 1 :11 

—MI 

xlC.-.Z • 

FUEL 

t 1 

9CG4 

. . , ' L. J 1:. r 2 :.; c: 1 

TIM I N'GxlC.-.i;* 6 c 4 3  ̂ . J -2 _ t 2.26 1.1421 

TIMI NG>:?-'E1xL3.-.- 2982 

Errc r 5 4 5 J J 3 0 ^ "98 i 

= 2.565205 



www.manaraa.com

146 

Figure 5.43 shows the ignition delay for the five fuels at the three injection 

timings. The delay was significantK ditTerent for the neat biodiesel and the blends. It can 

be seen from the figure that the oxidized biodiesel (100%HPV) had the shortest ignition 

delay of the four ftiels. .A.t the standard timing, the 100%HPV biodiesel had a 1.5" shorter 

ignition delay than the base fuel while the delay for the lOO^^oLPV biodiesel was only 

about 0.6" shorter. This is probably because of the higher cetane number of the 

100%HPV biodiesel compared with the IOO%LPV biodiesel. Higher cetane number fuels 

give shorter ignition dela\ s [69]. 

.Advanced injection timing increased the ignition delay. For the earlier injection, 

the initial air temperature and pressure are lower so the delay will be increased. Neat 

oxidized biodiesel at the 3'' retarded injection timing had a 0.9" shorter ignition dela> than 

the 3" advanced injection timing. 

Both physical and chemical processes take place during the ignition delay period. 

The effects of changes in the physical and chemical properties of fuels on the delay 

period have been studied by Glavincevske [70] and it was found that the chemical 

characteristics of the fiael are much more important. The ignition qualitv- of the fuel, 

defined by its cetane number, has the greatest effect on the delay. The cetane number has 

been shown to increase as the biodiesel oxidizes [24]. Fuel viscosity has been found to 

have no effect on the ignition delay [81]. The cetane number of commercial diesel fuel is 

normally in the range of 40 to 46. while the cetane number of soybean-based biodiesel is 

between 46 and 55. The cetane number of biodiesel depends on the level of oxidation of 

the fuel. The cetane number of o.xidized soybean-based biodiesel with a peroxide \ alue 
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81 is about 54.6 [24], Even non-oxidized biodiesel has a higher cetane number than No. 2 

diesel fuel and that is why the non-oxidized (I00°/o) biodiesel has less ignition delay than 

the No. 2 diesel fiiel. 

Figure 5.44 shows the av erage of three days of data for each blend at ail timings. 

The retarded injection timing has the lowest delay and the advanced injection timing has 

the highest. This was true for both 100% and 20°/o loads and for the diesel beiseline. The 

20% load had a longer ignition delay than 100°o load. Wong et al. [81] found that the 

delay increases approximately linearly with decreasing load for direct injection diesel 

engines. The injection timing for the retarded timing was about 11" while for the 

advanced timing it was about 18''. .A. similar result was found by Lyn [62). He found that 

at normal injection conditions the minimum delay occurs with the start of injection at 

about 10^' to 15"' BTDC. The calculated ignition delay is probably slightly off because of 

the start of injection was determined from the fuel line pressure which may be somewhat 

different than the actual needle lift. 

5.4 Discussion of Observed Trends 

In this section the effect of ignition dela\'. start of injection, and start of 

combustion on engine emissions will be discussed. The first two sections will discuss the 

effect of ignition delay on the HC and CO emissions. The next two sections will discuss 

the effect of the start of injection and the start of combustion on the NO^ emissions and 

the effect of the start of fuel injection on the smoke number. Finally, the tradeoff 

between NO^ emissions and smoke number, and CO and HC emissions will be discussed. 
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5.4.1 Effect of ignition delay on HC emissions 

There are two identified sources of unbumed hydrocarbon (HC) emissions in 

diesel engines. One is in regions where excessive dilution with air pre\ents the 

combustion because the fuel-air mixture is past the lean combustion limit. The magnitude 

of the unbumed HC from over-lean regions will be related to the amount of fuel injected 

during the ignition delay period, before combustion starts. The second source is the fuel 

that vaporizes from the nozzle sac volume during the later stage of combustion and 

during the exhaust stroke. Caton et al. [82] found that as the delay period increases 

beyond a certain value (11"^). the HC emissions increase at an increasing rate. 

The HC emission data were plotted for all the fuels and all injection timings 

against the ignition delay. Figures 5.45 and 5.46 show the correlation between HC 

emissions and the ignition delay for the full load and light load operating conditions. The 

HC emissions decrease as the ignition delay gets shorter. The neat biodiesels have a 

shorter ignition delay which results in less HC emissions while the No. 2 diesel fiiel has 

higher HC emissions because of its longer ignition delay. The lower points on the figures 

represent the neat btodiesel while the upper points represent the No. 2 diesel fuel. The 

intermediate points represent the blends. The linear relationship is clearh' more 

pronounced for the light load engine condition and this may be because of its higher HC 

emissions. The light load HC emissions are about six times higher than at full load. This 

due to the greater likelihood of overmixing due to the higher air/tliel ratio at low load. 

These HC emissions for all fuels and for all injection timings fall on one line. This 

indicates that the difference in HC emissions is related to the ignition delay and ma> not 
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be dependent on other fuel properties such as volatility'. At the light load engine condition 

the HC emissions are higher because there is less fuel and more chance for overmixing. 

The effect of the longer ignition delay is to allow more time for o\ ermixing which results 

in higher HC emissions. 

5.4.2 Effect of ignition delay on CO emissions 

Carbon monoxide is a natural intermediate product of hydrocarbon combustion. 

As the burned gas temperature falls due to expansion, the CO oxidation process slows 

and may freeze the CO concentration at a level higher than its equilibrium concentration. 

Figures 5.47 and 5.48 show the ignition delay vs. CO emissions curves at the full-load 

and light-load engine conditions, respectively. The CO emissions data vvere plotted for all 

fuels and all injection timings against the ignition delay. The CO emissions decrease as 

the ignition delay becomes shorter for both loads. The relation between CO emissions 

and the ignition delay are almost linear. This is most clearly shovMi for the light-load 

engine condition when the BSCO levels are about 10 times larger than at full load. The 

shorter ignition delay data points represent the neat biodiesels while the longer delay 

points represent No. 2 diesel fuel. The intermediate points are the blends. The CO 

emissions for all fuels and for all timings fall on one line particularly at light load. This 

indicates that the change in CO emissions may be related to the ignition delay. 

Under the fuel-lean conditions of a diesel engine, incomplete HC oxidation can 

result in an increase in CO levels. The CO is a product of partial combustion. The HC in 

the overmixed regions oxidizes ver\' slowly and they tend to produce more products of 
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incomplete combustion. .More CO emissions will be produced if at the beginning more 

HC is present. Thus, one reason for the lower CO emissions at shorter ignition delays is 

the lesser amount of HC emissions. .Another reason for the lower CO emissions could be 

that the oxidation of CO to CO; reaction proceeds to completion. Springer et al. [84] 

stated that the oxidation of CO to CO: reaction would be incomplete if there is a lack of 

oxidant, low average gas temperature in the engine cylinder, or a short residence time. 

The short residence time means there is less time available for the reaction. The biodiesel 

has a higher cetane number which results in a shorter ignition delay which in turn allows 

more time for the reaction to proceed from CO to CO:. This process of oxidation allows 

the biodiesel to have less CO emissions. Figures 5.49 shows the relation between HC and 

CO emissions. The CO emissions increase as the HC emissions increase. 

5.4.3 Effect of the start of fuel injection and the start of combustion on \0^ 

emissions 

Generally. NO^ emissions form in the high temperature regions of the combustion 

chamber. This emission generally increases under conditions of high temperature and 

lean operation where O: is present. Springer et al. [84] mentioned that an increase in the 

local temperature and the O: concentration within the fuel spra\- envelope helps to 

increase the NOx emissions from diesel engine combustion. Due to the oxygen contained 

in the biodiesel. more O: is available in the reaction zone during combustion and this 

could cause the NO^ emissions to rise. 

Many researchers have shown that neat biodiesel produces higher NOx emissions 
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than No. 2 diesel fuel. The biodiesel fuel chemistn was suspected to be the reason for the 

higher NOx emissions. But in this study it was found that the biodiesel fuel chemistry 

may not be the reason of the higher NOx emissions. The NO^ emissions at three different 

pump timings for the full and light load engine conditions are shown in Figures 5.50 and 

5.51. It is clear from these figures that the pump timings (injection timing at the pump) 

and the fuels have an effect on the N'O^ emissions. The N'O^ emissions appear to be 

linearly related to the fuel injection timing with a separate line for each fuel. The neat 

oxidized biodiesel showed the highest N'Ox emissions of any pump timing at the full load 

engine condition while No. 2 diesel fuel showed the lowest. This is the same result that 

many other researchers have observed [I. 78-80. 83]. 

It is important to realize that the pump timing was not the actual fuel injection 

timing. Because biodiesel properties are different from diesel fuel, the actual fuel 

injection timing for biodiesel is ditYerent than for diesel fuel. The actual injection timing 

for the biodiesel was not only different than the diesel fiael but also different from the 

pump timing which was set using diesel fuel. The biodiesel fuel is less compressible than 

diesel ftiel. so the pressure waves can propagate faster in the biodiesel than in diesel fuel. 

This is one of the reasons for the advanced actual injection timing of biodiesel compared 

with diesel fuel. This advanced injection may contribute to the additional NO^ emissions 

for the biodiesel while the biodiesel itself may not be the reason for the higher NO^ 

emissions. To investigate this effect, the NO^ emissions were ploned against the actual 

injection timing for all fuels and all pump timings as shown in Figure 5.52. Both the full 

and light load data showed the same trend. The NOx emissions for all fuels and all pump 
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timings fall on one line when plotted against the actual start of injection. This indicates 

that the difference in NO^ emissions can be explained b\ variations in the start of actual 

fuel injection and not because of the fuel. 

It would make better sense if the NO^. emissions and the actual start of 

combustion timing for all fuels and all pump timings fell on one line since the 

combustion is the process that actually produces the NOx- This would also incorporate 

differences in the ignition delay periods between biodiesel and diesel fuel that are based 

on differences in the cetane number. The start of combustion for the neat oxidized 

biodiesel was seen to be more advanced than the diesel fuel. The reason was the cetane 

number for the neat oxidized biodiesel was higher than for the diesel fuel. The ignition 

delay period for the higher cetane number fuel is shorter than for the lower cetane 

number fuel, so the higher cetane number fiael will ignite earlier than the lower cetane 

number fiiel. .A.nother reason for the advanced combustion timing of the neat oxidized 

biodiesel was the early start of fuel injection. These two reasons caused the ad\ anced 

combustion for the neat o.xidized biodiesel and this advanced combustion can give higher 

NO^ emissions. Figures 5.53 and 5.54 show the NO^ emissions vs. the stan of 

combustion timing for full and light load. When the NO^ data are plotted vs. the start ot 

combustion, differences between the fuels emerge again. However, on these plots the 

lines corresponding to neat biodiesel are below those for No. 2 diesel fuel and the 20% 

blends. This means that for the same start of combustion timing, the 100°/'o biodiesel fuels 

actually produced less NOx than diesel fuel. This result is unexpected and has not been 

reported b\ other researchers. However, the author is not aware of any other comparisons 



www.manaraa.com

35 

30 

25 

O 
t/) 
CQ 20 

15 

10 

yk' 

10 

Still! ol foinbusiioii, "H I IX' 

12  

II loiUl)  

• KID"..! I'V (lull load) 

•  2(l"«l l l 'V ( l i i l l  Kmd)  

• 2ir!»l I 'V Hull loud) 

X 21) (full load) 

14 16 

Figure 5.53 BSNO, emissions us a function of start of combustion at full-load cii{>inc condition 



www.manaraa.com

4 6 

Siarl DrCoinbiislion, "1)1 DC 

• l()()"olll'V (light linul) 

4 illO'!'bl.l'V (light Itiiid) 

• 2(»%lII'V (light loud) 

• 2()'"ol I'V (light Idiidl 

X 21) (light load) 

10 

Figure 5.54 BSISO, emissions as a function of start of combustion at light-load engine condition 



www.manaraa.com

165 

that have been made on this basis. 

5.4.4 Effect of the start of fuel injection on smoke number 

Diesel particulates are combustion generated carbonaceous material (soot) on 

which organic compounds have been adsorbed. Incomplete combustion of fuel 

hydrocarbons contributes to this component of the particulate material. Some of the 

particulate material is also produced from the lubricating oil. The engine exhaust system 

and the particulate collection system control the composition of the paniculate material. 

Depending on the temperature, the particulates may change their characteristics. .A.t 

temperatures below 500 ''C. the particles become coated with condensed high molecular 

weight organic compounds. These condensed organic compounds are unbumed 

hydrocarbons, oxygenated hydrocarbons, and polynuclear aromatic hydrocarbons. 

Inorganic species such as sulfLir dioxide, nitrogen dioxide, and sulfuric acid are also the 

part of the condensed material. 

The main concern of particulate measurement techniques is to determine the 

amount of particulate being emitted to the atmosphere. The particulates are normally 

obtained on a mass basis. The simplest technique uses a smoke meter which characterizes 

only the solid carbon portion of the particulate. This smoke meter measures the relative 

reflectance of a particulate sample collected on filter paper. It does not measure the mass 

directly. The smoke meter used in this experiment was a Bosch photoelectric densiometer 

which gave a number from 0 to 10 in units of Bosch Smoke Number. Bosch smoke 

number 0 corresponds to an absolutely white filter paper, while smoke number 10 
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corresponds to an absolutely dark filter paper which absorbs all the light. 

Figure 5.55 shows the relationship between the start of fuel injection and the 

smoke number. The neat biodiesel advanced the start of fuel injection to occur earlier 

than for No. 2 diesel fuel. The neat biodiesel showed a lower smoke number while the 

No. 2 diesel fuel showed a higher smoke number. .\zTni Bin Yahya [85] fueled a 4239D 

four cylinder inline John Deere tractor engine with soybean-based biodiesel. He found a 

significant reduction in the smoke number. In his experiment, soybean-based biodiesel 

reduced the smoke number by 81% to 85% compared to the base diesel fuel. Feldman et 

al. [79] also found that the advanced injection timing reduced the smoke level. 

5.4,5 Tradeoff bet\\een NOi emissions vs, smoke emissions 

Figure 5.56 shows the tradeoff relationship between the NO* emissions and the 

smoke number. This is a standard trade-off curve used by engine designers. Usually, 

anything that decreases NO* increases the smoke and vice-versa. In this figure smoke is 

plotted versus NOx for three injection timings (3° advanced, standard, and 3° retarded), 

and five fuel blends. The engine speed was maintained constant at 1400 rpm. The figure 

indicates that for this diesel engine, the smoke-nitric oxide tradeoff for biodiesel is lower 

than for the No. 2 diesel fuel. The smoke-nitric oxide tradeoff curve for No. 2 diesel fuel 

is in the upper right of the diagram while the oxidized neat biodiesel tradeoff curve is the 

lower left of the diagram. This means the oxidized neat biodiesel shows a better tradeoff 

than No. 2 diesel fuel. The neat non-oxidized and the 20% blends tradeoff curves are in 

between the oxidized neat biodiesel and the No. 2 diesel fuel. 
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6. CONCLUSIONS 

The objectives of this project were to understand the changes that occur in the fuel 

when it oxidizes, establish a connection between the ASTM fuel stability tests and the 

AOCS tests, evaluate the impact of oxidized fuel on engine performance and exhaust 

emissions, and compare the calculated fuel burning rate for oxidized biodiesel with the 

burning rate for unoxidized fuel and a baseline diesel fuel. 

During the course of the project it was found that the standard ASTM procedure 

for characterizing the oxidative stabilit>' of diesel fuel (ASTM D2274) was not 

appropriate for biodiesel. The original expectation that the primary obstacle to using 

oxidized biodiesel in an engine would be fuel filter plugging was also found to be 

incorrect. Long term testing with biodiesel that had been oxidized well beyond what 

should be encountered in practice showed no instances of fuel tllter plugging. Earlier 

work by other researchers had indicated that fuel filter plugging might be a problem. 

Now it is suspected that fuel filter plugging is caused by interactions between biodiesel 

and the fuel additives in the diesel fuel. Since these two aspects gave results that were 

different from what was expected, the chemical analysis portion of the project focused on 

understanding the changes that occur in the fiiel when it oxidizes. 

The purpose of this conclusion section is to summarize the experimental results as 

they relate to the objectives and then to make recommendations for future research. 
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6.1 Conclusions 

It was expected that the fuel filters would plug as the vegetable oil esters oxidized but 

none of the blends (20°o. 50%. or 100% biodiesel with No. 2 diesel fuel) were able to 

plug the filters even after many hours of operation. 

The ASTM D2274 method was found to he inappropriate for measuring gum and 

filterable insoluble for biodiesel fiiel because the washing tluid (isooctane) was not 

able to wash all the biodiesel from the tilters. Also, it was found that the gum material 

collected on both the top (sample) and bottom filters which pre\ented the bottom 

filter fi-om being used as a blank. 

The maximum peroxide value that could be reached for any blend was between 300 

and 400 meq. 02/'kg. Generally, the peroxide value rose to a maximum level of 300-

400 meq. 02/kg and then dropped off. Fuel with a high initial peroxide \alue 

oxidized faster than lower peroxide value fuel. The oxidation of the biodiesel 

occurred more rapidly at higher temperatures. 

The initial rate of increase of the acid value was higher until the point where the 

peroxide value dropped off. then the rate of increase of the acid value was lower. .A 

linear relation was found between the acid value and viscosity. The viscosity 

increased with time for all blends of biodiesel and diesel fuel. The induction period 

varied with different blend levels. The shortest one was evaluated for pure biodiesel 

and the longest one was evaluated at the 20% blend level. 

The engine performance of the neat biodiesels and their blends was similar to that ot 

No. 2 diesel ftiel with nearly the same thermal efficiency, and slightly higher fuel 
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consumption. 

6. Both of the neat biodiesel fuels increased the CO: emissions. Neat oxidized biodiesel 

increases the CO: emissions more than neat unoxidized biodiesel. CO; emissions 

increased with advanced injection timing. The higher CO: emissions were directly 

related to the BSFC. The higher the BSFC. the higher the CO: emissions. 

7. The neat biodiesels and the biodiesel blends produced lower CO emissions for all 

injection timings. The oxidized biodiesel produced even more reduction in CO 

emissions than the unoxidized biodiesel. Regardless of the injection liming, the neat 

oxidized biodiesel reduced the CO emissions between 24% to 2S.6% compared with 

diesei fuel. It also reduced the CO emissions as much as 15.3% compared to the neat 

unoxidized biodiesel at the full load engine condition. The injection timing has a 

significant effect on the CO emissions. TTie retarded injection liming produced 50% 

less CO emissions than the advanced injection. All neat biodiesels and biodiesel 

blends produced lower emissions of unbumed hydrocarbon with a maximum 

reduction of 51% for the neat oxidized biodiesel at standard injection liming. The neat 

oxidized biodiesel produced 15.8% lower HC emissions than the neat unoxidized 

biodiesel at standard injection timing. The retarded injection produced about 34% less 

HC emissions than the advanced injection timing for neat oxidized biodiesel. 

8. The neat biodiesels produced slightly higher NOv emissions than the base fuel (No. 2 

diesei). Statistically, the difference between the base fiiel and the blends did not 

produce significant differences in NOx emissions. Also, the effect of fuel oxidation on 

the NOx emissions was found to be insignificant but the injection timing did have a 
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significant effect on the N'Ox emissions. The 3'' retarded injection timing gave at least 

a 20.9®b reduction in N'Ox emissions at the full load engine condition compared with 

the standard injection timing. The light-load engine condition had even more 

reduction in NO^ emissions. 

9. The Bosch Smoke Number was significantly reduced when the diesel engine was 

fueled with neat biodiesel and blends with diesel fuel. The highest reduction was 

found for neat oxidized biodiesel at the standard injection timing, which was 62.9°o. 

The neat oxidized biodiesel produced about 14°/b lower smoke number than the neat 

unoxidized biodiesel but this level was not statistically significant. Injection timing 

had a significant effect on smoke number. The advanced injection timing gave a 

lower smoke number than the retarded injection. The 3" advanced timing had o\ er 

59.6''o lower smoke number than the 3" retarded injection timing for the neat 

biodiesels. 

10. The fuel injection timing advanced for neat biodiesel compared with diesel fuel at the 

same injection pump settings. The neat biodiesels advanced fuel injection timing 

about 2.3"^ compared with diesel fuel. .A.11 neat biodiesels and their blends experienced 

the same combustion stages as the base fuel. The neat non-oxidized biodiesel 

advanced the start of combustion by about 2.3" and the neat oxidized biodiesel 

advanced the start of combustion b\ 3.3'^ compared with diesel fuel. 

11. All neat biodiesel and its blends experienced a shorter ignition delay than diesel fiael. 

The neat oxidized biodiesel had a 0.9" shorter ignition dela> than the neat non-

oxidized biodiesel at standard timing. Retarded injection timing reduced the ignition 
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delay for all fuels. 

12. Shorter ignition delay reduced CO and HC emissions. The ignition delay was almost 

linearly correlated to CO and HC emissions. .A. common linear relationship was found 

between the start of fijel injection and the NO^ and smoke emissions. \\'hen the NO^ 

was plotted against the stan of combustion timing, there were differences between the 

fuels. However, at the same start of combustion, the neat biodiesel fuels were found 

to produce less NO^ than the No. 2 diesel fuel. Late injection timing reduced the NOx 

emissions but increased the smoke number. 

6.2 Recommendations for Future Work 

In this section, several suggestions are made based on the e.xperience gained 

during the experiment. If implemented, these suggestions will provide additional 

information about the effect of oxidized biodiesel on e.xhaust emissions. 

1. .A better mechanism to set the fuel injection timing is needed. .A Lab view 

program that could control injection timing at the time of experiment would 

be helpful. This would ensure constant injection timing for all fuels (oxidized, 

unoxidized. and base fuel). This technique would also provide the additional 

information needed to confirm the injection timing effect on emissions. 

2. Additional loads and different engine speeds would provide better supporting 

information on the effect of oxidation on emissions. Also, different blends of 

biodiesel and the diesel fuel would provide the information that can determine 

w hich is the best blend for lowest emissions. 
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Other oxygen-coritaining fuels should be added with oxidized and unoxidized 

biodiesel. and diesel tiiel to determine which oxygenate produced the most 

desirable result. Suggested oxygenates are di-alcohols and ethers. Di-alcohols 

contain two oxygen atoms like esters. 

Durability testing for the oxidized biodiesel would pro\ide the information 

whether the oxidized biodiesel has any effect on engine. 
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APPENDIX A. AOCS OFFICIAL METHOD CD 3A-63 FOR ACID 

VALUE TEST [41] 

The acid value is the number of milligrams of potassium hydroxide (KOH) 

necessary to neutralize the free acids in 1 gram of sample. This method is applicable to 

crude and refined animal, vegetable, and marine fats and oils, and various products 

derived from them. The necessary apparatus, reagents, test procedure, and the 

calculations for the acid value test are explained below. 

Apparatus: 

1. Erlenmeyer flasks. 250 ml. 

2. Burette. 50 ml. 

Reagents: 

1. Potassium hydroxide (KOH). 0.1 N and 0.0IN in water. 

2. Solvent mixture contains of equal parts by volume isopropyl alcohol and toluene 

3. Phenolphthalein indicator solution. 1.0% in isopropyl alcohol. 

Procedure: 

1. .A.dd 0.8 ml phenolphthalein indicator solution to 50 ml of solvent mixture (1:1 

isopropyl alcohol - toluene) and neutralize with alkali (0.0IN KOH) to a faint but 

permanent pink color. The amount of alkali (0.0IN KOH) used to neutralize the 

solvent mi.xture is the blank (B). 

2. Determine the sample size from Table A.l by comparing the expected acid value. 

Higher acid value needs less amount of sample and lower acid value needs a large 

amount of sample. 
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Table A.I. Sample size for the test 

.\cid value Wt. Of sample (gm) 

0 to 1 20 

1 to 4 10 

4 to 15 2.5 

15 to 75 0.5 

75 and over 0.1 

3. Weigh the specified amount of sample from Table A.l into an Erlenmeyer tlask. 

3. Add 50 ml of solvent mixture (1:1 isopropyl alcohol - toluene). Be sure that the 

sample is completely dissolved. Warming may be necessary in some cases. 

5. Shake the sample vigorously while titrating with standard alkali (0. IN or 0.0IN KOH 

depending upon the level of acid value in the sample) to the first permanent pink 

color of the same intensit\- as that of the neutralized solvent. The color must persist 

for 30 seconds. The amount of standard alkali used in this step is .A. where .A is 

defined below. 

Calculation; 

The acid value, mg KOH/'g of sample = (A-B) * N * 56.1/W 

where: 

A- ml of standard alkali (O.IN or 0.0 IN K.OH) used in the titration 

B= ml of standard alkali (O.IN or O.OIN KOH) used in the titrating the blank 
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N= normality of the standard alkali (0.1 or 0.0 IN K.OH) 

W= grams of sample 
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APPENDIX B. AOCS OFFICIAL METHOD CD 8-53 FOR 

PEROXIDE VALUE TEST [421 

The peroxide value is a number that indicates the level of peroxides in a fat or oil 

that has developed as a result of oxidation. Peroxides are considered intermediates in the 

lipid oxidation reaction scheme. This method determines all peroxides, in terms of 

milliequivalents of peroxide per 1000 grams of sample, which oxidize potassium iodide 

(KI). This method is applicable to all normal fats and oils. The necessar>- apparatus, 

reagents, test procedure, and the calculations for the peroxide \alue test are explained 

belou'. 

Apparatus: 

1. Pipet. 0.5 ml. 

2. Erlenmeyer flasks, 250 ml. 

3. Burette. 50 ml. 

Reagents: 

1. Acetic acid- chloroform solution. 3:2 (volume basis). 

2. Potassium iodide (KI) solution, saturated, prepared each day is preferred by 

dissolving an excess of KI in recently boiled distilled water. Make sure that the 

solution of KI remains saturated during use. as indicated by the presence of 

undissolved KI cr\'stals in the solution. 

3. Sodium thiosulfate solution O.IN. prepared by dissolving 24.9 g of sodium thiosulfate 

in distilled water and diluting to 1 liter. 
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4. Starch indicator solution is used to test the sensitivity. This solution is prepared by 

making a paste with Ig of starch and a small amount of cold distilled water. Add this 

paste, while stirring, to 200 ml of boiling distilled water and boil for a few seconds. 

Immediately remove from the heat and cool. Store the solution in the refrigerator and 

use within 2 to 3 weeks. 

Procedure: 

1. Weigh 5.0 g of sample into a 250 ml flask. Add 30 ml of 3:2 acetic acid-chloroform 

solution. Shake to dissolve the sample. Add 0.5 ml of saturated KJ solution. 

2. Allow the solution to stand with occasional shaking for 1 minute and then add 30 ml 

of distilled water. 

3. Titrate with 0.1 N or O.OIN sodium thiosulfate. Continue titration until the yellow 

color almost disappears. Add about 0.5 ml of starch indicator solution. Continue 

titration until the blue color just disappears. 

4. Conduct a blank determination of the reagents daily. The blank can be determined by 

using the same above three steps without the 5.0 g sample. The blank titration must 

not exceed O.I ml of the 0.1 N sodium thiosulfate solution. 

Calculations: 

Peroxide Value (milliequivalents peroxide/lOOO g sample)= (.A-B) * N * 1000 ' W 

where: .A.= ml of standard alkali used in the titration 

B= titration of blank, ml 

N= normality of the standard alkali 

W= grams of sample 
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APPENDIX C. CALIBRATIONS OF PRESSURE TRANSDUCERS 

Two pressure transducers were used in this experiment. One of them was a Kistler 

model 606IB pressure transducer, and the other was a Kistler model 6230M1 pressure 

transducer. The Kistler model 606IB pressure transducer was calibrated with a dead

weight tester. The factorv" calibration was used for the 6230M1 pressure transducer. The 

specifications of these pressure transducers are shown in Table C.l. 

Table C.l Specifications of pressure transducers 

1 Tvpe 
! 

i Range 1 Linearity i Application j 

; Kistler606IB ' 0-250 bar j ± 0.2 (full scale) ' Cylinder pressure 

i Kistler6230Ml 
1 

0-250 bar 
1 

! , Injection pressizre 
1 : 1 

The Kistler model 606IB pressure transducer was calibrated before it vsas 

installed in one of the engine cylinders. The calibration procedure was to load and unload 

the known weights on the dead weight tester plate. From the pressure transducer, the 

output signal was amplified by a PCB Model 462.A charge amplifier as a voltage. A 

computer with a Lab-View program was used to record the voltage. A linear regression 

anahsis was performed to fit a straight line to the collected pressure data. The linear 

equation used to calculate the pressure for the Kistler model 606IB is as follows: 
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P - A<, ^ A, X V : R- = 1 

Where P = Cylinder pressure in bar: 

V = voltage output from the pressure transducer in volt 

.•\o and Ai = linear regression coefficients 

A,= 16.384 bar/V 

.^0= 0.0939 bar 

80 -

70 

60 -

a -

X -

45 3 35 25 4 15 2 as 1 0 

Vdt 

Figure C.I Calibration of the Kistler model 606 IB pressure transducer 
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The factory calibration was used for the model 6230M1 pressure transducer. This 

pressure transducer was installed in the fuel injection line. TTie sensitivity of this pressure 

transducer was 1.755 pC bar. The charge amplifier sensitivity was 100 pC volt. 

Combining these two sensitivities, the pressure transducer sensitivity was calculated in 

terms of pressure (bar). This calculated pressure transducer sensiti\ ity was 56.98 bar volt. 
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APPENDIX D. TUKEY'S GROUPING 

This section contains the results of the calculations to produce a table known 

Tukey's grouping. The same letter in the Tukey grouping column means there is 

sienificant ditYerence. 

Table D.l Tukey's Studentized Range (HSD) Test for variable: BSFC 
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Table D.2 Tukey's Studentized Range (HSD) Test for variable: BSCO2 
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Table D.3 Tukey's Studentized Range (HSD) Test for variable: BSCO 
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Table D.4 Tukey's Studentized Range (HSD) Test for variable: BSHC 
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Table D.5 Tukey's Studentized Range (HSD) Test for variable: BSNOx 
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Table D.6 Tukey's Studentized Range (HSD) Test for variable: Smoke Number 
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Table D.7 Tukey's Studentized Range (HSD) Test for variable: Start of Injection 
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Table D.8 Tukey's Studentized Range (HSD) Test for variable: Start of Combustion 
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Table D.9 Tukey's Studentized Range (HSD) Test for variable: Ignition Delay 
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Table D.9 (continued) 
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APPENDIX E. TEST DATA 

This section presents the raw data collected tbr this study. 
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Tabic R.l Ka>v data at standard tmiin{> (day 1) 

I'lirl NO. 2 diesei t^O. , 2 diesei iodvolpv i6o%lpv 
1 hilc 4/25/98 4/25/98 4/25/98 4/25/98 

I'llfiillc speed Itpiiil 1400 1400 1400 1400 
"ii III iiilcil liiml 100 20 20 100 
Umkc liiii|tic ll\ Ihlt 190 38 38 190 

1 iicl uei^lil ((•) 285 246 114 807 

1 line (nun 1 2 5 2 5 
Ainhicnl an Icnip ("1 j 70 70 70 70 
r..„„liiiinllt) 733 733 733 733 
1 cinpcniUiru ("1 ) 

1 liilcl ini icinp 66 70 69 70 
Ink-l inanilolil Icinp 115 83 92 117 

4 l iK'l icinp 40 40 40 40 
'I I'lioliii^ Wilier inlet temp 160 117 18 160 
7 (.'imling \Miter outlel lenip 176 161 162 177 
K 1 xhmist iniiiiiriild leinp 

>) 1 \hiutsl leinp shu^Uleil 835 390 38 836 
10 IherntDeouple sliield 137 102 104 134 
11 1 \lwiiist temp iinsliieleil 646 401 408 847 
12 (III temp 214 185 186 214 

1} Diiildint! eoiilini! water inlet 51 50 51 51 
14 Hiitldiiif! ciKiling Hait'i iiitilei 93 70 70 92 

C'lHiliint I'liiini/IO sec 1305 134 3 

Pressure 

I'ressiiie dill oi l I I (inllJ)) 1 96 1 85 1 83 1 98 
ll(Hisl pressure (psi) 3 05 05 3 
Oil ptessiiie (psi) 51 55 55 50 
I shiiiist pressme (psi) 32 1 9 2 33 
Kelalive Iniinidlts 33 34 33 33 
1 inissmns BSCOj (g/kW-hr) 725 529 1252 492 1278 852 724 234 

BSCO (g/kW-hr) 0 598 9 392 5 506 0 445 
BSHC (g/kW-hr) 0 103 0 677 0 426 0 065 
BSNO.(g/KW-hr) 22 228 19 141 21 620 24 748 
BSNO (g/kW-hr) 20 689 14 807 16 292 23 155 
BS02(g/kW-hr) 632 224 4652 841 4555 558 623 427 

Smoke Number (Bosch) 1 400 0 100 0 067 0 550 

BSFC (g/kW-hr) 226 389 390 818 452 777 256 415 
File Names ( \lindet I'ressnre d12dfc d12dlc dtbllc diblfc 

Injection I'lessnie d12dfi1 d12dli1 dibllil diblfil 

1 inissuiih (Ntivi d12dfnox d12dlnox dibllnox diblfnox 
1 inissiiiii (NO) d12dlno d12dlno diblino diblfno 

io%hpv 20%hpv 100%hpv 100%hpv 20%lpv 20%lpv 
4/25/98 4/25/98 4/25/98 4/25/98 4/25/98 4/25/98 

1400 1400 1400 1400 1400 1400 
100 20 20 100 100 20 
190 38 38 190 190 38 

1013 302 231 1311 1597 604 
7 6 4 8 11 12 

70 70 70 70 21 21 
733 733 733 733 733 733 

70 68 69 69 70 69 
117 84 82 114 118 85 
40 40 40 40 40 40 

159 121 118 160 159 122 
174 155 154 177 174 155 

838 396 386 832 844 393 
134 103 103 138 137 101 
851 407 397 844 212 404 
212 183 181 213 212 184 

51 50 50 51 51 51 
93 71 70 92 92 72 

144 132 7 139 6 

1 97 1 91 1 9 1 96 2 1 9 
3 05 05 3 3 05 

51 55 55 50 51 55 
33 2 2 32 32 1 9 
34 33 33 40 42 43 

719314 1250 930 1295 679 735 340 721 638 1250 930 
0 476 6 401 3 775 0 367 0 566 7 120 
0 089 0 630 0 317 0 053 0 095 0 624 

22 448 18 348 1 7 751 24 121 21 821 19 633 
20 993 14 695 14 322 22 258 20 225 15 469 

629 033 4605 017 4692 789 634 660 624 818 4613 794 
1 133 0 100 0 100 0 500 1 150 0 100 

229 906 399 821 458 735 260 347 230 649 399 621 
Ibtiptfc Ibhptic Ibhphic Ibhphfc Iblptfc Iblptic 
Ibhptfit Ibhptlil Ibhphlil Ibhphfil Iblptfil Iblpllil 
Ibhptfnx Ibhptinx Ibhphinx Ibhphfnx Iblptfnx Iblptinx 
Ibhptfn Ibhptin Ibhphln Ibhphfn Iblplfn iblptin 
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Table E.2 Raw data at 3" advanced timing; (day 2) 

Fuel Nil. 2 dirsci No. 2' 

diosi'l 

2(I%1J'V 20%U'V 

Dnic •l/2K/'>K •l/2«/')K •l/2K/'>K A/mm 
Kngiilr sprrd (rpm) N(KI 1^00 110(1 1411(1 
'/a (if ralril load 20 100 100 20 

llrnkr lorqur (n.lhi) IK |i;(l 100 IX 

1 ucl \\ci(:hl ((!l MK I2'«i HKI 6IX 

1 mil.' (mill) 7 ') <» 12 

Aiiihiuiil nil icnip ('T) (.')« (.') « ()>)8 (.OX 

I'aliii (iniiilliil 71.1 7.1.1 7.1.1 7(1 

lrinprnilurr("F) 

1 liilcl nil icinp (IW (>') (iM (i7 

.< Iiild iiiiiiiitiilil iciiip H2 111 116 HI 

•1 1 iK'l temp III 10 III •10 

(t C'oiilint! water inlet icnip 121 U.2 l(..1 I2.S 

7 C'liiiling Wilier millcl temp I.Sft 17« 176 I5(. 

X 1 \liiuist manildUl temp 

'» I xhaiist temp sliielile'! m X4I X'lO IXX 

1(1 1 herinocmiple NliieM <)(< I2'> I2'> )(I2 

II 1 AIUUISI temp iinshieled .V«) K52 8 SI IV) 

12 ()d leinp IK2 211 21.1 IX.1 

11 KiiiMint; oHiling water iiilet M) 61) 

I'l lUiildmg ciHiling watei outlet 72 KK X') 72 

((KiliiNiil roiint/10 <>rc .i.1') lt7() l(.7') 

I'rrssiirc: 

I'ressiiie ditV (il 1 I I (in 11;()) 1 H-i 1 '17 1 1 
BIHISI ptessilie (psl) 0 5 1 .I 0 s 

Oil picsMire (pM) .<15 SO SI S5 

1 \liuiist (jass pressiiie (psi) 1 K 1 2 .1 2 1 x 

Krli)li\f hiiiiiidlly .U 2') 1() •10 

Kmlssions: HSl( ̂ T R /kW-lir) I2(.5 SM 7.1.1 UI(. 72(1 810 127') 025 

»S( Oiti/lvW-lii) ') K.<H OK.II ()f>75 X 202 

HSIK (iVKW-ht) 0 (I'X) (1 105 (lO'lX 0 (IS.| 

USNOJu/KW-hr) 2 1  0 2 1  2« 102 27 120 21 Sit 

IISN()(iVk\V 111) 2(1 •M7 2(. 727 25')K(, 20 .107 

US( ).(i^\V-lu) •IW XI I (>2^ S22 (.27()X(> -l(i()| 411 

Smiike Niimhet (Hiihch) 0 100 1 1-^0 1 OSN (1 100 

USI((^kW-lii) I'M 'MIL 22K 772 212 102 400 OXS 

Kill- Names CUiiuler I'ressiiie a22.llc a22drc a2lptlc a2lptlc 

Injeituin I'lessiiie a22dli a22dri a2lptli a2lplli 

1 inisMiins (NDJ a22illnx a22illii\ a2lplln\ a2lptliix 

1 missmn (Ni i) a22illn\ a22dtii u2lptln\ a2ljilln\ 

1%111'V IO(l%lll"V 2(i%m'v 2(I%MI'V KHI'il.l'V l(KI%i l'\ 

4/2X/OX 4/28/08 4/28/08 4/28/08 4/2X/OX 4/28-OX 

1400 I Wit 1400 1400 1400 MOO 

UK) 20 100 20 loo 20 

100 IX 100 18 |O0 18 

lit)! .SXO 1X05 6S0 II SO 5 00 

7 10 11 1 1 7 0 

60 8 (.OX (.0 8 (.0 8 (.0 X 60 X 

7.11 71.1 7)1 71.1 7.11 711 

70 (.') 6X (lO 6X 6K 

118 86 1 16 84 115 X5 

40 40 40 40 40 4(1 

l(.4 125 l(.2 125 16S 127 

)7X 156 176 155 170 156 

X.IO .10,1 x.is loo X18 101 

lis 102 117 loo 116 loi 

XSO 401 X47 402 840 402 

216 1X4 211 182 216 1X4 

61) SO 60 58 (>() 50 

00 72 00 71 00 7 1 

l,S7 1 15 4 16.1 5 .14 l(>4 1 l6 6 

1 00 1 X4 1 00 1 86 1 07 1 87 

,1 0 5 .1 0 5 1 0 5 

SO s.s 51 ss SO SS 

.1 2 1 X 1 8 J 2 8 1 7 

.17 17 40 10 10 IX 

74X 0X1) 1.101 2X8 724 55X 1250 X52 717 181 1268 880 

(1 77X 5 lOX 0 6.10 7 022 0 712 5 118 

0 0(>6 0 416 0 1(12 0 662 0 075 0 518 

2X 175 24 (.06 27 407 22 8(.X 2X 175 24 (.Ot. 

26 627 21 210 25 082 20 000 26 627 21 210 

617 146 4628 411 627 512 4506 lOX 612 456 4565 850 

0 41.1 0 1(10 (1 X67 0 111 0 467 0 loo 

2(.4 XS8 4(il)72l 211 582 402 672 2611 000 440 247 

a2liphrc a2liplile a2hptre a2hptle a2lplire a2lphL 

a2liplili a2liplili a2liptri a21ipili a2lphri a2lplili 

i2liphrnx u2lipl\lii\ a'lipttin a2hplln\ a2lpliln\ a2lphlii\ 

i2liphrn\ a2li£hliiv a2hptl'ii\ a2liptlii\ a2lphlii\ a2lplilii\ 
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Tabic K.3 Raw data at 3" retarded timing; (day 3) 

llicl No 2 diesel No 2 diesel 20%HPV 

DhIC 4/30/98 4/30/98 4/30/98 

1 nginc speed (rpnO 1400 1400 1400 

°a ()l liiled liiiid 100 20 100 

hiiike lot(|iie (1) ll)|) 190 38 190 

1 no! ueiulu (gl 2273 791 3197 

1 line (niiiil 16 16 22 

Anibieni air leinp ("I I 69 8 69 8 69 8 

Calm (ninill)!) 733 733 733 
l einpeialiiie ("1 1 

69 1 Inlet air lenip 67 67 69 

Inlet nianirold letup 114 82 118 

4 l iii'l lenip 40 40 40 

(i I'lHilliig water inlel temp 159 119 159 
7 t 'lMiling «Htct millet temp 176 153 176 

4 1 AIUIIIM temp shielded 853 392 852 
Id liierinDcoiiple shield 127 98 138 
11 1 \haiisl temp iinsliieled 867 403 868 
12 Oil teniperatiire 210 180 211 
13 liiiilding eiHiling watei inlet 59 58 57 
14 Kuilding eiioling \viiter ontlet 85 70 83 

C'oolimnt eoiinl/ 10 see 124 6 28 6 123 9 
I'lessure dill ol I I1 (in 1 IjO) 1 99 1 88 1 99 
IliKist pressure (psil 32 0 5 32 
()j| presMiie (psi) 51 55 51 
1 \haust gass pressure (psi) 33 2 3 3 
Kelative humidity 46 46 42 

1 missions BSCOj(g/kW-hr) 723 301 1258 538 722 316 

BSCO (g/kW-hr) 0 483 8 496 0410 

BSHC (g/kW-hr) 0 110 0 655 0 110 
BSNO,(g/kW-hr) 16 232 14 131 16 342 
BSNO (g/kW-hr) 15 516 9 462 15 607 
BSO, (g/kW-hr) 640 238 4694 997 635 050 

Smoke Number (Bosch) 1 967 0 100 1 750 

BSFC (g/kW-hr) 225 693 392 705 230 866 
File Names ('ilnuler I'tessmc r32dfc r32dlc r3hptfc 

Inieelion I'lcssiiic r32dfl i32dll rShplfl 
1 nnssiiins (N(),.) f32dfnx f32dlnx r3hptfnx 
1 nnssiDii |N( )| r32dfn r^^ri j3h£tfn 

lOOVoLPV 100%LPV 100%HPV 
4/30/98 4/30/98 4/30/98 

1400 1400 1400 
20 100 100 
38 190 190 

1665 3720 3753 
29 23 23 

69 8 69 8 69 8 
733 733 733 

67 68 68 
83 115 119 
40 40 40 

118 160 160 
155 176 177 
397 833 834 
98 126 128 

408 847 846 
180 212 213 
59 60 60 
70 86 87 

127 3 132 2 
1 9 1 99 1 99 
05 3 3 
55 51 51 

2 3 2 32 
44 43 43 

1288 136 725 756 732 194 
5 035 0 346 0 301 
0 265 0 057 0 040 

13 593 18 098 18 762 
9 861 17 212 17 802 

4668 659 648 148 647 344 
0250 1 200 1 100 

456 064 256 954 259 233 
r3lphlc r3lphfc1 r3hphfc 
r3lphll r3lphfi r3hphfi 

r3lphlnx f3lphfnx r3hphfnx 
r3lphln r3lphfn r3hghfn 

20%LPV 20%LPV 
4/30/98 4/30/98 

1400 1400 
100 20 
190 38 

1324 1413 
9 28 

69 8 69 8 
733 733 

68 68 
120 90 
40 40 

158 120 
175 154 
854 396 
128 99 
869 408 
211 182 
60 59 
86 71 

130 9 30 4 
1 99 1 92 
32 05 
51 55 

3 3 2 
47 45 

721 228 1254 185 
0 380 6 690 
0 112 0 594 

17 192 14 889 
16 285 10 080 

639 037 4655 284 
1 750 0 200 

233 714 400 861 
r3lptfc r3lptlc 
r3lptfi r3lptli 

r3lplfnx r3lpllnx 
r3lpt(n r3lptln 

100%HPV 
4/30/98 

1400 
20 
38 

1204 
21 

69 8 
733 

68 
87 
40 

121 
154 
398 
100 
409 
182 
59 
71 

31 6 
1 9 
0 5 
55 

2 
46 

1286 331 
4 105 
0 195 

14 176 
10 039 

4664 362 
0 333 

455 425 
f3hphlc 
r3hphli 

r3hphlnx 
r3hpNn 
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Tabic E.4 Raw data at 3" retarded (iniint> (day 4) 

1 licl No 2 diesel No 2 diesel iOG%HPV 100%HPV 20%LPV 20%LPV 20%HPV 20%HPV 'WO%LPV 100%LPV 
Dale 5/6/98 5/6/98 5/6/98 5/6/98 5/6/98 5/6/98 5/6/98 5/6/98 5/6/98 5/6/98 
1 iigiiK- speed (rpni) 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 
"mil ralcil Iliad 100 20 100 20 20 100 100 20 20 100 
Drake IhO 190 38 190 38 38 190 190 38 38 190 

1 iit'l wcitihl (g) 12B7 498 1955 632 657 583 1312 659 1024 2100 
1 line (mill) 9 10 12 11 13 4 9 13 18 13 
Aiiihieiii ait lenip ("1 I 71 6 71 6 71 6 71 6 70 7 71 6 71 6 71 6 71 6 71 6 
ralni (iiiiiillfii 733 733 733 733 733 733 733 733 733 733 
leinpeialiiie ("I I 7(1 

1 liilcl iiir icinp 69 69 69 69 69 72 70 69 70 117 
liilcl inaint'iild leiiip 117 84 118 86 86 123 118 86 86 40 

•1 1 licl icnip 40 40 40 40 40 40 40 40 40 156 
(i CiKiliiig Wilier iiilel Iciiip 157 118 158 119 117 156 154 117 117 175 
7 Ciioliin! walct oiillel Icmp 173 153 176 153 153 175 171 153 154 835 
'> 1 \hausl lemp shielded 849 394 832 399 393 854 851 395 397 136 
10 llieimoeiiupic shield 141 113 136 108 105 134 133 103 102 849 
11 1 Ahaiisi Icmp iiiibhiclcd 860 403 845 409 404 867 866 407 408 211 
12 Oil lenipcialiirc 210 180 212 181 179 211 209 181 180 56 
1.1 lUiildini; cixiliiig walct inlei 57 56 57 57 57 56 57 56 56 86 
M liiiildiiig eiHiling walcr oiillcl 86 71 86 71 71 84 86 71 71 1134 

C'lmloanl ciniiil/ 1(1 ^ec 138 30 1 121 1 30 1 28 3 113 5 123 28 2 25 6 1 99 
Pressure dill ni l 11 (iii ll;()) 1 99 1 91 1 99 1 94 1 95 1 99 1 99 1 91 1 95 3 
Hiiiisl prcssiiic (psi) 3 05 3 05 05 3 3 05 05 51 
Oil pressure (psi) 52 55 55 5 55 55 51 51 55 55 33 
1 xhausl gass pressure (psi) 32 2 33 1 8 2 33 34 1 9 1 9 46 
Uelalive luiinidil) 22 26 39 43 45 44 44 45 45 
1 iiiissioiis BSCO; (g/kW-hr) 728 07437 1267 7659 731 03963 1289 0501 1266 0282 724 46251 724 60058 1259 8517 1276 3591 724 85535 

BSCO (g/kW-hr) 0 4802851 7 8096035 0 3520033 4 1964929 6 4005593 0 470194 04481035 5 2597523 5 1312311 0 4023038 
BSHC (g/kW-hr) 0110787 0 7108044 0 0440539 0 2297962 0 6636457 01094388 0 0971149 0 551341 0 3091238 0 0444716 
BSNO, (g/kW-hr) 16 282978 14 442604 19 378626 11 470205 13 482501 17 109917 16 758761 12 589992 14 045516 18 15005 
BSNO (g/kW-hr) 16 360075 11 412793 18 171001 7 6433268 9 744498 16 288949 16 065223 8 4029847 10 347403 17 421623 
BSO; (g/kW-hf) 637 40306 4666 5495 63990746 4595 8931 4597 0466 628 68526 632 87771 4658 523 4662 3653 639 25882 

Smoke Number (Bosch) 1 8667 0 1333 0 9667 0 3333 03 1 7 1 7 04 0 2667 1 3 
BSFC (g/kW-hr) 227 18287 395 58416 258 82431 456 38771 401 45009 231 55177 231 5959 402 67216 451 89444 256 63476 
File Names Cvliiidei I'lessuic r42dfc r42dlc t4hphfc r4hphlc r4lptlc r4lpttc r4hplfc r4hptlc r4lphlc r4lphfc 

liijcciitin I'ressiire r42dfi r42dli r4hphfi r4hphli r4lptli r4lptfi f4hptfi r4hptli r4lphli f4lphfi 
I'lilissiiins (N( )J r42dfnx r42dlnx r4hphfnx r4hphlnx r4lptlnx r4lplfnx r4hptfnx r4hptlnx (4lphlnx r4lphfnx 
1 iiiissiiiii (NO) r42dfn r42dln f4hphfn r4hphln i4lgljn r4Jgtfri /4fiptfn '4ti£lln f4l£ihln /4lphfn 
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Table K.5 Raw data at standard timing (day 5) 

1 IK'I No 2diesel No 2 diesel 20%HP\/ 26%HP\/ 

Dilic 5/17/98 5/17/98 5/17/98 5/17/98 

rii(;mc '.peed (tpm) 1400 1400 1400 1400 

of IlllOl llliul 100 20 20 100 

lUakc l(iri|uc (II Ihi) 190 38 38 190 

1 llfl Wflglll (g) 2855 594 357 1757 

1M11C (iiiin) 20 12 7 12 

Aiiibicnl ail Icmp ("1 ) 68 66 66 66 

I'alni (ninillt>) 733 733 732 732 

Irmprraliirr ("!• ) 
1 liilci ail Icinp 71 69 69 69 

* liilci iiuiiiitiild temp 119 94 85 113 

•1 1 iic'l icn\p 40 40 40 40 

(i Cooling water Inli'l temp 162 122 119 162 

7 Ciiolmg water diitlel (cmp 175 154 161 177 

K 1 \luiiM in.miriiid temp 829 

1 vliniisl laiip sliieldcil 843 388 394 843 

Id 1 heriiuicoiiple hliield 139 114 105 134 

11 I Miaiist toinp unshicled 844 393 399 841 

U Oil temp 212 181 184 212 

1.^ liiiilding ciitilmi! walei iiilel 54 53 54 54 

M lUiilding eooling wulet outlet 89 73 72 88 

I ooloaiU eoiinl/ 1(1 sec 177 3 34 8 26 2 1466 

l'rc\*iirr; 
I'lesMire dill oi l I I: im II.O) 1 96 1 8 1 81 1 97 

UiMisl pieiMiie (psi) 3 05 05 3 
()il piesMiie ipsi) 55 55 54 50 

1 \haiisl i;ass piessiire (pM) 33 1 8 2 32 

Kclative liiimidily 52 57 58 57 

i''.ml«sliins; BSCOj(g/kW-hr) 726 802 1260 129 1267 499 727 776 

BSCO(g/kW-hr) 0 603 10 272 6 431 0 491 

BSHC(g/kW-hf) 0 096 0 697 0 667 0 090 

BSNO.(g/kW-hr) 20 883 19 213 18011 21 804 

BSNO(g/kW-hr) 19 639 15 057 14 806 19 989 

BSOj(gmW-hr) 611 138 4556 063 4623 736 622 491 

Smoke Number (Bosch) 1 367 0 100 0 100 1 167 

BSFC(g/kW-hr) 226 786 393 201 405 116 232 611 

1 lie Names I yliiiilei I'lessiire 5a2d(c 6b2dlc 5bhpilc 5bl)plfc 

Inieclioii I'lesMiie 5a2dfl 5b2dli 5bhptli 5bhptfi 

1 missions |N()J 5a2dfn)( 5b2dlnx 5bhptlnx 5bhptfnx 

1 iinssions (N()) 5a2dfn 5b2dln 5bhplln 5bhptfn 

1007oHP\/ lOOVoHPV " iobVoLPV iOOVoLPV 20%LP\/ 2b%LPV 
5/17/98 5/17/98 5/17/98 5/17/98 5/17/98 5/17/98 

1400 1400 1400 1400 1400 1400 
100 20 20 100 20 100 
190 38 38 190 38 190 

1965 679 507 1137 356 1171 

12 12 9 7 7 8 
65 66 65 65 66 66 

732 732 732 732 732 732 

69 69 69 69 70 71 
122 90 90 118 94 123 
40 40 40 40 40 40 

162 124 122 164 123 161 

176 155 154 177 154 176 

832 393 394 831 390 842 
145 114 116 14/ 114 147 
831 398 398 829 395 841 

214 183 180 212 182 212 

54 53 53 53 53 53 

90 74 74 89 74 89 
159 3 37 5 34 5 154 4 35 5 148 a 

1 9 1 8 1 79 1 92 1 72 1 9 

3 05 05 3 05 3 
50 54 54 50 55 50 
3 1 1 9 2 32 1 8 32 

58 59 59 58 58 58 
734 779 1269 504 1263 895 728 849 1263 948 727 569 

0 349 4 526 5515 0 405 7 128 0 499 

0 049 0 352 0418 0 061 0 692 0 097 

23 082 18 369 20 447 24 112 20 604 21 505 

21 959 15 147 16 070 22 764 15 652 19 799 

625 364 4556 304 4471 519 626 634 4590 412 618 156 
0 500 0 100 0 too 0 533 0 067 1 133 

260 148 449 467 447 481 258 049 403 982 232 545 
5bhphfc Sbhphic Sblphic Sblphfc Sblpllc Sblptfc 

5bhphfi 5bhphli 5blphli 5blphfi 5blptli 5blplfi 

5bhphfnx 5bhphlnx 5blphli)X 5blphfnx 5blpllnx 5blptfnx 

5bhphfn Sbhphin Sblphin 5blphfn 5^1ln 5blgtfn 
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Tabic K.6 Raw data at 3" advanced timint> (day 6) 

1 ucl No i liiesel Nil 2 diesel 2(l".ill'V 2(1'! 1.111^^ " MKI'^i i'V KHrnll'V KHIVolll'V 1(1(1" ..IIPV^ 2(r'oi pV 2(1" «i i'V 

1 )lltc 5/2l")X 5/2l/')K 5/2l/')8 5/2l/'>K S/2|/')K 5/2l/')8 5/2l/')K 5/2l/')K 5/2l/')8 5/21 ')K 

1 nginc speed (ipni) 1 KHI IKK) M(KI 110(1 Mdo 1 KlO I'Kil) M(l(l I'KKI Moil 

"ii (il inicil lomi 2(1 Kill 1(1(1 2(1 2(1 Kill 2(1 1(1(1 2(1 mil 

Drake lou|iie (I'l Ihi) « l')() l')(l tx l<)(l tx l')0 )X I'XI 

1 iiel \\ei)!hi li!| (.51 1155 16)2 5(.K •4(i() 15(1(1 KIK. 2! IK 5()t 411 

1 line (inin) W 1(1 11 II K <) II It III i 

Anihieiil iiK lenip ( T ) (.7 (.7 (.(i bl (i(i (i7 t^l (i? ul 
I'aini (innillgl 7)2 7.tll 7Ml 7)0 7)0 72') 7)2 ^2') 71(1 Mil 

rcnipcraliiic (' I | 
1 Inlel ail lenip 7(1 711 711 71 71 71 70 71 (i') 71 

\ liilcl nianiti.ld lenip I2li 12(1 8') K7 11') X7 1IX X4 11(1 

t 1 ucl leinji •td 411 411 40 40 40 40 40 to 40 

(. ( iiiilini! walei inlel lenip 125 l(.5 1(1.1 12(1 12) Ui5 124 I(i5 124 I(l5 

7 ( odlmn water oiillel lenip 15(1 178 177 |5(i l.5(, 17') 155 I7'» 15(1 I7X 

'» I AIUIIISI lemp shielded .1K(i 85K 85(1 )')| )')4 84(1 )')1 851 )X7 X4') 

1(1 1 lieriiiiieiuiple shield 117 14(1 M5 105 1(14 111 104 IK. III) 1 )(. 

II 1 Aliaiisl (einp uiisliicleJ .I'JI 85(1 84'; Mn .)')8 854 .1')4 84') )')1 X4') 

12 Oil teinperaUiic 182 214 215 184 181 217 181 217 1X1 215 

11 lUiilding ciHiling waler inlel 58 (lO 5K 5(1 55 55 54 55 55 55 

I'l Uiiilding ciHilint;; wulei millel 74 '>1 •M 75 75 ')| 74 ')2 75 ')2 

(iiiilnant ciiiint/1(1 scr .1(1 8 171 (i 172 1 .)/ 1 14 2 17(14 )()2 17') ) 16 l(i') 7 

Pressure ilill ul I.I 1 (in Mill) 1 81 1 ')7 1 ')1 1 7(. 1 7(1 1 ')'> 1 77 1 ') 4 1 7') 1 '/5 

lioiisl pressure l|isi) (1 5 .1 .1 (1 5 II 5 ) 0 5 1 0 5 ) 

511 Oil pressuic (psil 54 5(1 50 54 54 5(1 54 

1 '» 

50 54 

) 

511 

1 \haiist (!ass pressure (psil 1 ') .1 ) : 1 ') 1 ') .1 2 

54 

1 '» ) 2 1 X ) 

Kriufivr hiinildity .)8 4/i 44 4) 47 47 48 50 48 45 

1 missiiins HSl'( );((i'kW-lir) I27K ;)2 74(1 K(H 7 17 454 128) 114 I2')II(I7(| 74"' 8(.7 I2')l (i7.l 752 5(.8 1252 587 ''.)0 (.7(1 

nsi ()(|i/kW-hr) 1(1 (..»'< 1 l(>(i IIX4') 7 504 f. 14') IlKUi 5 054 0 7H'I 8 4(iO 11X17 

USIU (tt/kW hri 1177(1 II IIK. 0 111! 0(i')| (1 541 0 07') (I44K 0 IKi'l 0 7')5 0 1112 

l)SNO.(i;/kW-hil 24 ')55 2(1 55t( 28 0114 25 27(1 25 514 2') 074 24 2')7 2') 5'») 21 5X(i 2(. (i27 

HSNO(t(/k\V-hi| 21 1')') 2(i452 2(i li')ll 1(1 80) 21 7(l(. 27 5(1') 21 ).)) 21 IKK. IK')5I 25 125 

HS( ).(n/kW-litl 4(11.1 7.1(1 (iln (il2 (il ) 5(,(, 4(i28 777 4584 85(1 tiKidt') 45')8 70(1 (.IS 8')') 4 552 1.78 (.12 (.(.4 

Sniiike Nuniher (Hiiseh) (1 Inn Il')(i7 II 70(1 0 loo (l(l(.7 0 4 )1 (I(l(i7 0 4) .) (I0(.7 0 ' ) ) )  

USI((g,'kW-hil .)')') 1)11(1 2)1 155 2)5 7114 410 171 45r. 74') 2(i4 7K2 457 )|(i 2(.(i 44(. 400 )50 2 )1 5)« 

1 lie Names {'* linder I'resMiic 62dlcl (i2d)e (ihplle (.hplle (ilpllle (ilpllle (iliphk- (.Iiphlc (ilpllc (ilplle 

Injecliiin I'lessiiic (>2dh (Odl'i (ilipHi (ihplli (.Iplili (ilphli (iliphli (.liphl'i (.Iplli (il|.(li 

1 inisiiiins (N(),| (i2dln\ (i2dlnx (iliplliix (.hplln\ (.Iphinx (ilpllliu (ilipliinx (iliplilnv (ilpllii\ (.lpllii\ 

1 inissiiins (NO) (i2dln (i2dhl (.lipllii (ihpllii (ilplllll (iljihrn (iliplilii (ih|illln (ilpllll (ilpllll 
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Tabic E.7 Raw data at 3" advanced timinR (day 7) 

iTicI No 
I )illc 
I niiim; spccil (rpiii) 
"n 111 riilcil load 
Htiikc iiir(|iic (It lhi) 
1 jicl woiplil (y) 
l liiii' (11)111) 
Ainhicnl air Icnip f'l I 

I'nlin (mini 1)1) 

icMi|icriitiito ("1) 
I Inki iiir icnip 

liilci iiiiinilolil temp 
A I iicl Ivmp 
(> I 'oDliMg watci inlet temp 
7 t'lKiling water itiilici ti-mp 

I vlumst temp shielileil 
10 ihetmoctniple shield 
II IAIUUISI temp iinsliieled 
12 Oil temperatiire 
13 Hiiilding eiHiliiig uiiter inlet 

M Huilding eixiling water nutlet 

I'lHiliiant ciiuni/ III see 
I'resMire dill (>11 11: (in lljOl 
Uiit)st pressure (psi) 
()il pressure (psi) 
I \liaiist gass pressure I psi I 
Kelutive hiiiiiiJity 

I missions BSCOj(g/kW-hr) 
BSCO(g/kW-hr) 
BSHC(g/kW-hr) 
BSNO.(g/kW-hr) 
BSNO(g/kW-hr) 

BSO^(g/kW-hr) 
Smoke Number (Bosch) 
BSFC (g/kW-hr) 
File Names I'slindei Pressure 

Inieclion I'lessiiie 
1 ntissiiin* (NO,) 
I iitissmns (N( I) 

2 diesel 20%HPV 20%HP\/ 
5/28/98 5/28/98 5/28/98 

1400 1400 1400 
100 100 20 
190 190 38 

2325 2392 608 
16 16 12 
66 66 66 

731 731 731 

71 71 70 
123 125 91 

40 40 40 
166 166 126 
178 178 155 
860 860 389 
148 145 111 
856 857 396 
217 217 183 

59 58 56 
93 93 76 

1874 187 8 38 6 
194 1 94 1 79 

3 3 05 
50 50 54 
34 32 1 8 
57 56 57 

739 848 743 102 1259 214 
1 184 1 001 7 338 
0 113 0 102 0 680 

25 025 29 643 25 508 
22 762 27 454 20 529 

601 883 604 198 4511 985 
1 000 0867 0 033 

230 857 237 509 402 468 
72dfc 7hptfc hptIc 
72dfi 7hplfi hptli 

72dfnx 7hptfrix hplinx 
72dfn 7hpjfn hjtlii 

2 diesel 
5/28/98 

1400 
20 
38 

765 
15 
66 

731 

71 
91 
40 

126 
155 
386 
104 
392 
182 

57 
75 

39 2 
1 81 
05 
54 

1 8 
58 

1298 314 
11 621 

0 880 
22 813 
21 465 

4625 783 
0 067 

405 116 
72dlc 
72dli 

72dlnx 
72dln 

ldO%HPV 100%HPV 20%LPV 
5/28/98 5/28/98 5/28/98 

1400 1400 1400 
20 100 20 
38 190 38 

952 2193 1013 
16 13 20 
66 66 67 

732 733 733 

70 71 71 
69 121 90 
40 40 40 

124 166 124 
156 178 155 
392 847 388 
109 138 109 
398 846 394 
183 217 183 

55 55 55 
76 93 76 

36 8 186 1 37 
1 77 1 95 1 81 
05 3 05 
54 50 54 
1 8 33 1 8 
57 57 58 

1334 942 756 956 1258 800 
5 397 0 849 8 246 
0 393 0 072 0 728 

25 976 30 679 24 449 
23 307 28 811 18 566 

4672 952 614 495 4513 319 
0 067 0 400 0 000 

472 636 268 000 402 336 
7hphlc 7hphfc1 7lptlc 
7hphli 7hphfi 7lptli 

7t)phlnx 7hphfnx 7lptlnx 
7hphln 7hphfn 7Jgllri 

lOOVoLPV 100%LPV 
5/28/98 5/28/98 

1400 1400 
20 100 
38 190 

746 1812 
13 11 
67 68 

730 730 

70 72 
86 114 
40 40 

125 165 
156 179 
390 847 
105 143 
395 846 
183 216 
65 63 
78 92 

35 8 169 7 
1 73 1 94 
05 3 
54 50 

2 32 
61 59 

1287 481 739 164 
7 498 0 963 
0 490 0 075 

24 689 28 403 
19 279 26 358 

4598 351 616 070 
0 100 0 400 

455 832 261 701 
7lphlc 7lphfc 
7lphli 7lphfi 

7lphlnx 7lphfnx 
7Jphln 7l£hfn 

20%LPV 
5/28/98 

1400 
100 
190 

2066 
14 
67 

732 

70 
118 
40 

163 
177 
845 
141 
844 
215 

55 
93 

166 4 
1 95 

3 
50 
34 
59 

733 516 
1 034 
0 109 

26 100 
24 227 

611 778 
0 867 

234 445 
7lptfc 
7lplfi 

71pllnx 
7lgtfn 
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Tabic K.8 Raw data at 3" retarded timing (day 8) 

1 lid No 2 diesel No. 2 diesel 20%HPV 20%HPV 100%LPV 100%LPV 100%HPV lOOVoHPV 20%LPV 20%LPV 
Date 5/29/98 5/29/98 5/29/98 5/29/98 5/29/98 5/29/98 5/29/98 5/29/98 5/29/98 5/29/98 
I jigiiie speed (rpnit 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 
"n (il rated load 100 20 20 100 20 100 20 100 100 20 
DraU' toiijiie (t) Ihii 190 38 38 190 38 190 38 190 190 38 
1 iiel weitilit igi 2151 743 403 188 641 1620 572 1798 2065 756 
1 line Iniin) 15 15 8 13 11 10 10 11 14 15 
Ambient ait temp ("1 | 68 69 68 68 69 69 69 66 66 66 
I'atm (iniiillti) 732 733 732 732 731 731 730 730 728 728 
leinperutiire (' ! ) 

1 Inlet an temp 69 70 69 69 70 70 70 70 70 70 
Inlet manilold temp 127 91 89 115 89 119 89 121 124 92 
1 lie! temp 40 40 40 40 40 40 40 40 40 40 

6 ( oiiluig NNatei inlet temp 160 121 117 161 122 161 121 161 159 122 
7 ( iMilini; uiiter outlet temp 175 154 160 176 156 177 155 176 173 155 
*' 1 \liaiist temp shielded 858 395 394 849 397 838 399 840 856 394 
III 1 hermoconple shield 154 118 110 143 108 147 109 140 142 109 
II 1 Aluiiist temp unshieled 858 401 400 850 403 839 403 840 B61 399 
1^ Oil tempeiiiture 211 182 183 211 182 212 181 212 210 182 

11 Kiiildiiiii eiHiliiig \Milcr inlel 63 65 63 64 65 66 65 64 63 64 
N Huildini; eooling water outlet 91 76 74 92 77 93 77 93 93 78 

C ooloaiit count/ III see 138 5 32 7 24 136 2 32 7 143 8 32 3 142 1 151 9 33 6 
I'lessiiie dilV ol 1 I I (in ll<()| 1 99 1 82 1 8 1 95 1 8 1 98 1 79 1 95 1 99 1 82 
Hoost pressure (psii 3 05 05 3 05 3 0 5 3 3 05 
(III pressure (psi) 50 54 54 55 54 50 54 50 50 54 
1 \himst tass pressure (psil 32 2 2 32 2 33 2 32 32 3 
Relative humidil> 60 61 62 61 61 61 61 60 60 60 
1 niissioiis BSC02(g/kW-hr) 730 111 1260 977 1251 966 720 735 1277 407 726 926 1283 339 733 453 723 161 1252 587 

BSCO(g/kW-hr) 0 651 8455 6 645 0 729 6 365 0 652 4 156 0 554 0 686 6 936 
BSHC(g/kW-hf) 0 121 0619 0 512 0 099 0 383 0 059 0 259 0 052 0 105 0 602 
BSNO.{g/kW-hr) 16200 14 214 12 774 15 892 14 119 18 772 11 592 19 261 16 939 13 564 
BSNO(g/kW-hr) 15 372 9 641 9 291 14 474 10 140 17 402 11 592 18 091 16 020 9 482 
BS02(g/kW-hr) 631 182 4563 353 4579 261 633 385 4700 556 641 176 4641 027 646 116 639 479 4652 Oil 

Smoke Number (Bosch) 2 000 0 100 0 300 1 900 0 133 1 267 0 300 1 067 1 900 0 167 
BSFC (g/kW-hr) 227 818 393 466 400 152 230 360 462 887 257 368 454 366 259 679 234 332 400 350 
File Names ( iiliiide/ I'lcssiKf 82dfc 82dlc Shptic Bhplfc 8lphlc 8lphfc1 Bhphic Bhphfc BIptfc 8lptlc 

Inieetion I'lessiiie 82dri1 82dli Bhptli Shptfi 8lphll 8lphfl 8hphli Bhphfi BIptfi 8lplli 
1 missions (Nt i,.| 82dfnx 82dlnx Bhptinx Bhptfnx 8lphlnx 8lphfnx 8hphli)x Bhphfnx SIptfnx BIptInx 
1 mission (Nt )| 82dfn 82dln 8hp|ln 8hgtfn aiphln 8lphfn Shphin Shphfn 8lptfn SIptIn 
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TahIc E.9 Raw data at standard timing (day 9) 

1 licf No 2 diesel No 2 diesel 20%HPV 
Dnlc 6/1/98 6/1/98 6/1/98 
1 njiiiic spcfi) ((pm) 1400 1400 1400 
"o III [ilk'd Kiml 100 20 20 
Miiikc li)ii|uc (II lhi) 190 38 38 

I'licl \M-l(!hl Ig) 998 791 560 

l liDC (tnin) 7 16 11 
Anihiciil mi Icnip ("I ) 66 65 65 
I'atni (Minillg) 722 723 723 
Icmpoiauiic ("I ) 

1 Inlcl iiir temp 70 70 69 
^ Inlet maniloltl temp 121 89 87 
-t l iicl temp 40 40 40 
(i (.'iHilmg water miet temp 161 122 121 
7 C'liolmt! witler mitlei temp 176 155 155 
K I'xiuiiisi maiiil'olJ temp 

1 Miaiisl temp sliieliled 854 391 396 
III 1 hcriiuiciiiiple slticld 138 105 108 
< 1 I \haiisl leiiip iiiishieleil 854 396 402 
12 Oil temp 213 182 181 
I.V Uuililii\g eiHiliiig vsatei miel 62 62 61 
M Miiilding ctioling wiiler oiillel 91 76 75 

(.'iKilount eiiunt/ 10 see 145 7 33 4 31 9 

I'ressiire 
I'rcsMiie dill' ofl 11; (ill ll;()) 1 95 1 75 1 8 
HiMi'ii piesMire (psii 3 05 0 05 
Oil pressure (psi) 50 54 54 
IMiaiisI pressure (psi) 32 1 8 1 8 
Kelali\e luinudil> 51 51 50 
1 uiissiims BSC02(g/kW-hr> 725 892 1258 538 1265 2J9 

BSC0(9/kW-hr) 0 594 9 557 6 844 
BSHC(g/kW-hi) 0 107 0 662 0 591 
BSNOx(g/kW-hr) 21 136 19827 18 060 
BSNO(g/kW-hr) 20 365 15 174 14 374 
BSOi{g/kW-hr) 604 736 4560 778 4526 697 

Smoke miinhei (Diiseli) 1 367 0 067 0 133 
BSFC(g/kW-hr) 226 502 392 705 404 394 
1 lie Name C AIiiulei I'lessiiie 92dfc 92dlc 9hpilc 

liiicctiiin I'reisure 92d»i 92dll 9hplli 
1 niissinn iNi )j 92dfnx 92dlnx 9liptlnx 
N() emissiiin (N()) 92dfn 92dln 9hptln 

!6%HPV 20%LPV 2G%LPV 100%HPV 
6/1/98 6/1/98 6/1/98 6/1/98 

1400 1400 1400 1400 
100 20 100 100 
190 38 190 190 

1420 618 1460 2639 
10 12 10 16 
65 66 65 65 

724 723 723 723 

70 69 70 69 
117 89 119 119 
40 40 40 40 

161 122 161 160 
176 156 177 176 

841 393 847 838 
140 96 135 135 
839 397 846 838 
213 183 213 214 
62 65 65 63 
92 78 93 93 

145 3 32 4 142 8 141 6 

1 97 1 84 1 96 1 95 
3 05 3 3 

50 54 50 50 
32 1 8 32 3 2 
50 51 51 51 

725 705 1279 925 725 705 740 108 
0 539 7 596 0 632 0 566 
0 099 0 604 0 103 0 048 

21 818 19 006 21 557 25 369 
19 983 14 569 19 797 23 425 

609 266 4643 756 616 227 624 739 
1 133 0 067 1 167 0 533 

231 949 409 088 231 949 262 035 
9hplfc 9lptlc 9lplfc 9hphfc 
9hptfl 9lptli 9lptfi 9hphfi 

9hptfnx 9lptlnx 9lplfnx 9hphfnx 
9hptfn 9lptln 9lplfn 9hghfn 

100%LPV r007DLPV 
6/1/98 6/1/98 

1400 1400 
20 100 
38 190 

800 2120 
14 13 
65 65 

724 725 

69 69 
86 117 
40 40 

122 162 

156 177 

394 840 
100 134 
399 839 
182 215 
63 63 
77 93 

32 3 146 6 

1 81 1 93 
05 3 
54 50 

2 3 
53 51 

1282 057 731 759 
6 598 0 663 
0 327 0 051 

20 512 24 126 
16 127 23 142 

4545 592 616 074 
0 067 0 700 

453 912 259 079 
9lphlc 9lphfc 
9lphlc 9lphfi 
9lphlc 9lphfnx 
9lphjc Qlphfn 

100%HPV 
6/1/98 

1400 
20 
38 

913 
16 

66 
723 

70 
89 
40 

123 
156 

395 
103 
401 
184 
63 
77 

33 6 

1 75 
0 5 
54 
2 

53 
1280 254 

4 705 
0 262 

18 791 
15 059 

4556 729 
0 100 

453 274 
9liphlc 
9hphli 

9hphlnx 
9hphln 
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204 

Table E.IO Combustion characteristics at standard timing 

% load Fuel Start of Iniection ("BTDC) Start of Combustion CBTDC) Ignition Delay (degree) % load Fuel 

Day 1 Day 5 Day 9 Average Day 1 Day 5 Day 9 Average Day 1 Day 5 Day 9 Average 

100 100%HPV 17.65 17 40 17 70 17 58 12.20 12 20 12 50 12 30 545 5 20 5 20 5 28 

100 100%LPV 1761 17 30 17 80 17 57 11 50 11 20 11 40 n 37 6.11 6 10 6 40 6 20 

too 20%HPV 15 36 15 35 13 55 14 75 9 10 9 30 7 10 8 50 6 26 6 05 6 45 6 25 

100 20%LPV 15,55 15 60 15 65 15 60 9 00 9 00 9 00 9 00 6 55 5 60 6 55 6 60 

100 2D 16 96 15 08 15 30 15 78 9 10 9 80 8 00 8 97 7 86 5.28 7 30 681 

20 100%HPV 13 18 14 50 14 35 14 01 5.60 7 40 7 50 7 17 6 58 7 10 6.85 6.84 

20 100%LPV 13.00 13 75 14 25 13.67 5 70 6 20 6 50 6 13 7 30 7 55 7 75 7 53 

20 20%HPV 12.75 12 50 13 00 12 75 460 4 20 4 80 4 53 8 15 3 30 8 20 8.22 

20 20%LPV 12 85 12 75 12 90 12.83 4.20 4 10 4 00 4 10 8 65 8 65 8.90 3 73 

20 2D 1270 12 55 12.95 12 73 3.20 3 00 3 20 3 13 9 50 9 55 9 75 9 60 

Table E.ll Combustion characteristics at 3° advanced timing 

% load Fuel Start of Injection (°BTDCi Start of Combustion (°BTDC/ Ignition Delay (degree) % load Fuel 

Day 2 Day 6 Day 7 average Day 2 Day 6 Day 7 average Day 2 Day 6 Day 7 average 

100 100%HPV 20 45 20 59 20 50 20.51 14.30 14.80 14 70 14 67 5 95 5 79 5.80 5 85 

100 100%LPV 20 45 21 50 20.35 20 77 13 70 14 50 13.60 13.93 6 75 7 00 6 75 6.83 

100 20%HPV 1790 19 50 20.30 19 23 11.20 12.50 13.00 12.23 6.70 700 7 30 7 00 

100 20%LPV 17 85 18 30 18 40 18 18 10.50 11 00 11 00 10 83 7 35 7 30 7 40 7 35 

100 2D 19 25 20 20 20 20 19 88 11.20 11 90 12 00 11 70 5 05 8 30 8 20 8 18 

20 100%HPV 15 85 16 65 16 75 16.42 8.90 9 50 9.60 9 33 6 95 7 15 7 15 7 08 

20 100%LPV 16 18 16 52 16 17 16.29 7 90 8.50 8 10 8 17 828 8 02 8.07 8 12 

20 20%HPV 14 82 15 80 16 22 15.61 6 30 7 30 7 30 6.97 8.52 a 50 a 92 8 65 

20 20%LPV 14 97 15.17 15 30 15 15 5.50 5.70 6 20 5 80 9 47 9 47 9 10 9 35 

20 2D 15 55 16 62 16 85 16 34 5 40 6.20 6.50 6 03 10 15 10 42 10 35 1031 

Table E.12 Combustion characteristics at 3" retarded timing 

% load Fuel Start of Infection (°BTDC) Start of Combustion (°BTDC) Ignition Delay (degree) 

Day 3 Day 4 Day 8 average Day 3 Day 4 Day 8 average Day 3 Day 4 Day 8 average 

100 100%HPV 14 12 15.50 13 50 14.37 9 30 10.20 8 70 9 40 4 82 5.30 4.80 4 97 

100 100%LPV 13 85 14 25 13.65 13 92 8.40 8.70 8 00 8 37 5.45 5 55 565 5 55 

100 20%HPV 11 85 12.57 11.95 12.12 5.40 7 00 6 30 6 57 545 5.57 5 65 5 56 

100 20%LPV 12.25 1367 12.30 12.74 6.20 7 50 6.10 6.60 6 05 6 17 6 20 6 14 

100 2D 11 72 12.45 12.50 12 22 5.20 6.60 5 50 5.77 6.52 585 7 00 646 

20 100%HPV 1020 1060 9.90 10.23 3 90 4 20 3.50 387 6 30 6 40 6 40 6 37 

20 100%LPV 9 97 1020 9.90 1002 3.00 3.00 2 50 2 83 6.97 720 7 40 7 19 

20 20%HPV 9.50 980 9 75 968 1 50 2.00 2.00 1 83 8.00 7 80 7 75 7 85 

20 20%LPV 960 10 60 9 25 9.82 1 10 2 00 1 00 1 37 8 50 8 60 8 25 845 

20 2D 9 50 
._ J 

10 55 9 30 9.78 0.20 1 40 0.30 0.63 9 30 9 15 9 00 9 15 
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